962 research outputs found

    Parameter reduction in nonlinear state-space identification of hysteresis

    Full text link
    Hysteresis is a highly nonlinear phenomenon, showing up in a wide variety of science and engineering problems. The identification of hysteretic systems from input-output data is a challenging task. Recent work on black-box polynomial nonlinear state-space modeling for hysteresis identification has provided promising results, but struggles with a large number of parameters due to the use of multivariate polynomials. This drawback is tackled in the current paper by applying a decoupling approach that results in a more parsimonious representation involving univariate polynomials. This work is carried out numerically on input-output data generated by a Bouc-Wen hysteretic model and follows up on earlier work of the authors. The current article discusses the polynomial decoupling approach and explores the selection of the number of univariate polynomials with the polynomial degree, as well as the connections with neural network modeling. We have found that the presented decoupling approach is able to reduce the number of parameters of the full nonlinear model up to about 50\%, while maintaining a comparable output error level.Comment: 24 pages, 8 figure

    Grey-box state-space identification of nonlinear mechanical vibrations

    Full text link
    The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure

    Identification of complex nonlinearities using cubic splines with automatic discretization

    Full text link
    One of the major challenges in nonlinear system identification is the selection of appropriate mathematical functions to model the observed nonlinearities. In this context, piecewise polynomials, or splines, offer a simple and flexible representation basis requiring limited prior knowledge. The generally-adopted discretization for splines consists in an even distribution of their control points, termed knots. While this may prove successful for simple nonlinearities, a more advanced strategy is needed for nonlinear restoring forces with strong local variations. The present paper specifically introduces a two-step methodology to select automatically the location of the knots. It proposes to derive an initial model, using nonlinear subspace identification, and incorporating cubic spline basis functions with fixed and equally-spaced abscissas. In a second step, the location of the knots is optimized iteratively by minimizing a least-squares cost function. A single-degree-of-freedom system with a discontinuous stiffness characteristic is considered as a case study
    corecore