3 research outputs found
Heat transfer in a low latitude flat-plate solar collector
Study of rate of heat transfer in a flat-plate solar collector is the main subject of this paper. Measurements of collector and working fluid temperatures were carried out for one year covering the harmattan and rainy seasons in Port Harcourt, Nigeria, which is situated at the latitude of 4.858oN and longitude of 8.372oE. Energy balance equations for heat exchanger were employed to develop a mathematical model which relates the working fluid temperature with the vital collector geometric and physical design parameters. The exit fluid temperature was used to compute the rate of heat transfer to the working fluid and the efficiency of the transfer. The optimum fluid temperatures obtained for the harmattan, rainy and yearly (or combined) seasons were: 317.4, 314.9 and 316.2 [K], respectively. The corresponding insolation utilized were: 83.23, 76.61 and 79.92 [W/m2], respectively, with the corresponding mean collector efficiency of 0.190, 0.205 and 0.197 [-], respectively. The working fluid flowrate, the collector length and the range of time that gave rise to maximum results were: 0.0093 [kg/s], 2.0 [m] and 12PM - 13.00PM, respectively. There was good agreement between the computed and the measured working fluid temperatures. The results obtained are useful for the optimal design of the solar collector and its operations
Determination of the thermal conductivity and specific heat capacity of neem seeds by inverse problem method
Determination of the thermal conductivity and the specific heat capacity of neem seeds (Azadirachta indica A. Juss) usingthe inverse method is the main subject of this work. One-dimensional formulation of heat conduction problem in a spherewas used. Finite difference method was adopted for the solution of the heat conduction problem. The thermal conductivityand the specific heat capacity were determined by least square method in conjunction with Levenberg-Marquardt algorithm.The results obtained compare favourably with those obtained experimentally. These results are useful in the analysis ofneem seeds drying and leaching processes
Mathematical analysis of interconnected photovoltaic arrays under different shading conditions
A comprehensive mathematical analysis of interconnected photovoltaic arrays under different shading conditions (opacity) and patterns (column, row, diagonal and corner) has been carried out in this work. The equivalent circuit models for the different shading conditions and patterns, and pseudocode algorithm were developed upon which the performance characteristics of the interconnected arrays were analyzed. Five different interconnections were inclusively considered in this work: series-parallel, total-cross-tied (TCT), bridge-linked, ladder and honey-comb interconnection. The emerging analytical results revealed that TCT is most dominant interconnection and shading patterns across the strings (row and diagonal) have detrimental effect on output power, especially when the opacity is one (signifying perfect shading condition) but shading patterns along the string (column or corner shadings) are less severe to power generation. The formation of double peaks sequel to the presence of shadings are inimical to power generated from the interconnected arrays. Moreover, increasing the interconnections enhances the output power and further serves as a means of bypassing current in the event of threats to the modules. Thus, the results obtained provide vital information for smooth operation and maximization of output power in interconnected arrays by avoiding shades on the strings