23 research outputs found

    Intergenerational Sexual Relationships: The Voices of the Public

    Get PDF
    Encouraging intimate talk about sex on the radio is an unorthodox way of reaching research participants. However for this study it was the only viable option for eliciting information about a taboo topic-older men having sex with young girls.  Two radio talk-back sessions were conducted in Gaborone-Botswana with the aim of gathering men's views on intergenerational sexual relationships. The callers were asked whether they thought intergenerational sexual relationships were prevalent in Botswana or not, they were asked to give reasons for such relationships and whether they think intergenerational sexual relationships could contribute to the spread of HIV/AIDS in Botswana. They were 56 callers, 38 men and 18 women. They called from all parts of Botswana. In the views of the public and not just those of men are reported. All the 56 callers said that intergenerational sexual relationships exist in Botswana. Financial and material gain, love and sexual satisfaction, stimulating sexual drive, the myth of self-cleansing, loss of religious beliefs and cultural values were cited as the drivers of intergenerational sexual relationships. The majority of callers indicated that the main reason why these sexual relationships could contribute to the spread of HIV is the lack of condom use.  The lack of condom use was associated with the motives that drive older men and girls to engage in these sexual relationships. It is recommended that programmes that greatly increase the risk perception of young women and older men regarding involvement in intergenerational sexual relationships be launched. Legislation that takes a zero tolerance approach to exploitation and violence against women and girls should be reinforced. Keywords: Intergenerational;  self-cleansing;    myth; stimulating; polygamy; condo

    Exposure-response relationship of residential dampness and mold damage with severe lower respiratory tract infections among under-five children in Nigeria

    Get PDF
    Background: Previous epidemiological studies demonstrated an increased risk of respiratory health effects in children and adults exposed to dampness or mold. This study investigated associations of quantitative indicators of indoor dampness and mold exposure with severe lower respiratory tract infections (LRTI) among children aged 1-59 months in Ibadan, Nigeria. Methods: In-home visits were conducted among 178 children hospitalized with LRTI matched by age (±3 months), sex, and geographical location with 180 community-based children without LRTI. Trained study staff evaluated the indoor environment using a standardized home walkthrough checklist and measured visible dampness and mold damage. Damp-moldy Index (DMI) was also estimated to quantify the level of exposure. Exposure-response relationships of dampness and mold exposure with severe LRTI were assessed using multivariable restricted cubic spline regression models adjusting for relevant child, housing, and environmental characteristics. Results: Severe LRTI cases were more often male than female (61.8%), and the overall mean (SD) age was 7.3 (1.35) months. Children exposed to dampness <0.3 m2 (odds ratio [OR] = 2.11; 95% confidence interval [CI] = 1.05, 4.36), and between 0.3 and 1.0 m2 (OR = 2.34; 95% CI = 1.01, 7.32), had a higher odds of severe LRTI compared with children not exposed to dampness. The restricted cubic spline showed a linear exposure-response association between severe LRTI and residential dampness (P < 0.001) but a nonlinear relationship with DMI (P = 0.01). Conclusions: Residential dampness and DMI were exposure-dependently associated with higher odds of severe LRTI among under-five children. If observed relationships were causal, public health intervention strategies targeted at reducing residential dampness are critically important to mitigate the burden of severe LRTI among under-five children

    Indoor bacterial and fungal aerosols as predictors of lower respiratory tract infections among under-five children in Ibadan, Nigeria

    Get PDF
    Background: This study aimed to investigate the association between exposure to diverse indoor microbial aerosols and lower respiratory tract infections (LRTI) among children aged 1 to 59 months in Ibadan, Nigeria. Methods: One hundred and seventy-eight (178) hospital-based LRTI cases among under-five children were matched for age (± 3 months), sex and geographical location with 180 community-based controls (under-five children without LRTI). Following consent from caregivers of eligible participants, a child’s health questionnaire, clinical proforma and standardized home-walkthrough checklist were used to collect data. Participant homes were visited and sampled for indoor microbial exposures using active sampling approach by Anderson sampler. Indoor microbial count (IMC), total bacterial count (TBC), and total fungal count (TFC) were estimated and dichotomized into high (> median) and low (≀ median) exposures. Alpha diversity measures including richness (R), Shannon (H) and Simpson (D) indices were also estimated. Conditional logistic regression models were used to test association between exposure to indoor microbial aerosols and LRTI risk among under-five children. Results: Significantly higher bacterial and fungal diversities were found in homes of cases (R = 3.00; H = 1.04; D = 2.67 and R = 2.56; H = 0.82; D = 2.33) than homes of controls (R = 2.00; H = 0.64; D = 1.80 and R = 1.89; H = 0.55; D = 1.88) p < 0.001, respectively. In the multivariate models, higher categories of exposure to IMC (aOR = 2.67, 95% CI 1.44–4.97), TBC (aOR = 2.51, 95% CI 1.36–4.65), TFC (aOR = 2.75, 95% CI 1.54–4.89), bacterial diversity (aOR = 1.87, 95% CI 1.08–3.24) and fungal diversity (aOR = 3.00, 95% CI 1.55–5.79) were independently associated with LRTI risk among under-five children. Conclusions: This study suggests an increased risk of LRTI when children under the age of five years are exposed to high levels of indoor microbial aerosols

    Association of childhood pulmonary tuberculosis with exposure to indoor air pollution: a case control study

    No full text
    Abstract Background Crude measures of exposure to indicate indoor air pollution have been associated with the increased risk for acquiring tuberculosis. Our study aimed to determine an association between childhood pulmonary tuberculosis (PTB) and exposure to indoor air pollution (IAP), based on crude exposure predictors and directly sampled and modelled pollutant concentrations. Methods In this case control study, children diagnosed with PTB were compared to children without PTB. Questionnaires about children’s health; and house characteristics and activities (including household air pollution) and secondhand smoke (SHS) exposure were administered to caregivers of participants. A subset of the participants’ homes was sampled for measurements of PM10 over a 24-h period (n = 105), and NO2 over a period of 2 to 3 weeks (n = 82). IAP concentrations of PM10 and NO2 were estimated in the remaining homes using predictive models. Logistic regression was used to look for association between IAP concentrations, crude measures of IAP, and PTB. Results Of the 234 participants, 107 were cases and 127 were controls. Pollutants concentrations (ÎŒg/m3) for were PM10 median: 48 (range: 6.6–241) and NO2 median: 16.7 (range: 4.5–55). Day-to-day variability within- household was large. In multivariate models adjusted for age, sex, socioeconomic status, TB contact and HIV status, the crude exposure measures of pollution viz. cooking fuel type (clean or dirty fuel) and SHS showed positive non-significant associations with PTB. Presence of dampness in the household was a significant risk factor for childhood TB acquisition with aOR of 2.4 (95% CI: 1.1–5.0). The crude exposure predictors of indoor air pollution are less influenced by day-to-day variability. No risk was observed between pollutant concentrations and PTB in children for PM10 and NO2. Conclusion Our study suggests increased risk of childhood tuberculosis disease when children are exposed to SHS, dirty cooking fuel, and dampness in their homes. Yet, HIV status, age and TB contact are the most important risk factors of childhood PTB in this population

    ‘I am not someone who gets skin cancer’: Risk, time and malignant melanoma

    Get PDF
    ‘Delay’ is a term used in the cancer literature since the 1930s to describe the period between self-detection of a concerning sign of possible disease and presentation to a health professional. This linguistic choice carries an implication of blame for apparent failure to manage a risk appropriately, drawing attention away from the contemporaneous perspectives of those who respond to suspicious indicators more or less quickly. We present findings from a grounded theory study of accounts given by 45 patients about their slower or quicker journeys to a diagnosis of cutaneous malignant melanoma, a cancer which can ‘hide in plain sight’. There has been little research exploring in qualitative detail patients’ perspectives on their decision-making about what subsequently turn out to have been signs of this most risky of skin cancers. The findings frame referral time-lapses in terms of normalisation of symptoms, sometimes buttressed by reassurance derived from health promotion messages, disconfirmation of patients’ concerns by their general practitioners and prioritisation of other life concerns. We argue that a shared sense of urgency surrounding melanoma self-referral derives from a clinical representation of current knowledge which conceals numerous evidential uncertainties

    Association of indoor microbial aerosols with respiratory symptoms among under-five children: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Despite the recognition of the importance of indoor microbial exposures on children's health, the role of different microbial agents in development and aggravation of respiratory symptoms and diseases is only poorly understood. This study aimed to assess whether exposure to microbial aerosols within the indoor environment are associated with respiratory symptoms among children under-5 years of age. METHODS: A systematic literature search was conducted on PubMed, Web of Science, GreenFILE, ScienceDirect, EMBASE and Cochrane library through February 2020. Studies that investigated the exposure-response relationship between components of the indoor microbial communities and respiratory symptoms among under-five children were eligible for inclusion. A random-effect meta-analysis was applied to estimate pooled relative risk (RR) and 95% confidence interval (CI) for study specific high versus low microbial exposures. The potential effect of individual studies on the overall estimate was evaluated using leave-one-out analysis, while heterogeneity was evaluated by I2 statistics using RevMan 5.3. RESULTS: Fifteen studies were eligible for inclusion in a meta-analysis. The pooled risk estimate suggested that increased microbial exposure was associated with an increased risk of respiratory symptoms [pooled relative risk (RR): 1.24 (1.09, 1.41), P = 0.001]. The association was strongest with exposure to a combination of Aspergillus, Penicillium, Cladosporium and Alternaria species [pooled RR: 1.73 (1.30, 2.31), P = 0.0002]. Stratified analysis revealed an increased risk of wheeze [pooled RR: 1.20 (1.05, 1.37), P = 0.007 and allergic rhinitis [RR: 1.18 (0.94, 1.98), P = 0.16] from any microbial exposure. CONCLUSIONS: Microbial exposures are, in general, associated with risk of respiratory symptoms. Future studies are needed to study the indoor microbiome more comprehensively, and to investigate the mechanism of these associations

    Home Assessment of Indoor Microbiome (HAIM) in Relation to Lower Respiratory Tract Infections among Under-Five Children in Ibadan, Nigeria: The Study Protocol

    Get PDF
    The association between household air pollution and lower respiratory tract infections (LRTI) among children under five years of age has been well documented; however, the extent to which the microbiome within the indoor environment contributes to this association is uncertain. The home assessment of indoor microbiome (HAIM) study seeks to assess the abundance of indoor microbiota (IM) in the homes of under-five children (U-5Cs) with and without LRTI. HAIM is a hospital- and community-based study involving 200 cases and 200 controls recruited from three children's hospitals in Ibadan, Nigeria. Cases will be hospital-based patients with LRTI confirmed by a pediatrician, while controls will be community-based participants, matched to cases on the basis of sex, geographical location, and age (±3 months) without LRTI. The abundance of IM in houses of cases and controls will be investigated using active and passive air sampling techniques and analyzed by qualitative detection of bacterial 16SrRNA gene (V3-V4), fungal ITS1 region, and viral RNA sequencing. HAIM is expected to elucidate the relationship between exposure to IM and incidence of LRTI among U-5Cs and ultimately provide evidence base for strategic interventions to curtail the burgeoning burden of LRTI on the subcontinent

    Indoor bacterial and fungal aerosols as predictors of lower respiratory tract infections among under-five children in Ibadan, Nigeria

    No full text
    Background: This study aimed to investigate the association between exposure to diverse indoor microbial aerosols and lower respiratory tract infections (LRTI) among children aged 1 to 59 months in Ibadan, Nigeria. Methods: One hundred and seventy-eight (178) hospital-based LRTI cases among under-five children were matched for age (± 3 months), sex and geographical location with 180 community-based controls (under-five children without LRTI). Following consent from caregivers of eligible participants, a child’s health questionnaire, clinical proforma and standardized home-walkthrough checklist were used to collect data. Participant homes were visited and sampled for indoor microbial exposures using active sampling approach by Anderson sampler. Indoor microbial count (IMC), total bacterial count (TBC), and total fungal count (TFC) were estimated and dichotomized into high (> median) and low (≀ median) exposures. Alpha diversity measures including richness (R), Shannon (H) and Simpson (D) indices were also estimated. Conditional logistic regression models were used to test association between exposure to indoor microbial aerosols and LRTI risk among under-five children. Results: Significantly higher bacterial and fungal diversities were found in homes of cases (R = 3.00; H = 1.04; D = 2.67 and R = 2.56; H = 0.82; D = 2.33) than homes of controls (R = 2.00; H = 0.64; D = 1.80 and R = 1.89; H = 0.55; D = 1.88) p < 0.001, respectively. In the multivariate models, higher categories of exposure to IMC (aOR = 2.67, 95% CI 1.44–4.97), TBC (aOR = 2.51, 95% CI 1.36–4.65), TFC (aOR = 2.75, 95% CI 1.54–4.89), bacterial diversity (aOR = 1.87, 95% CI 1.08–3.24) and fungal diversity (aOR = 3.00, 95% CI 1.55–5.79) were independently associated with LRTI risk among under-five children. Conclusions: This study suggests an increased risk of LRTI when children under the age of five years are exposed to high levels of indoor microbial aerosols

    Childhood lower respiratory tract infections linked to residential airborne bacterial and fungal microbiota

    No full text
    Residential microbial composition likely contributes to the development of lower respiratory tract infections (LRTI) among children, but the association is poorly understood. We aimed to study the relationship between the indoor airborne dust bacterial and fungal microbiota and childhood LRTI in Ibadan, Nigeria. Ninety-eight children under the age of five years hospitalized with LRTI were recruited and matched by age (±3 months), sex, and geographical location to 99 community-based controls without LRTI. Participants’ homes were visited and sampled over a 14-day period for airborne house dust using electrostatic dustfall collectors (EDC). In airborne dust samples, the composition of bacterial and fungal communities was characterized by a meta-barcoding approach using amplicons targeting simultaneously the bacterial 16S rRNA gene and the internal-transcribed-spacer (ITS) region-1 of fungi in association with the SILVA and UNITE database respectively. A 100-unit change in house dust bacterial, but not fungal, richness (OR 1.06; 95%CI 1.03–1.10) and a 1-unit change in Shannon diversity (OR 1.92; 95%CI 1.28–3.01) were both independently associated with childhood LRTI after adjusting for other indoor environmental risk factors. Beta-diversity analysis showed that bacterial (PERMANOVA p < 0.001, R2 = 0.036) and fungal (PERMANOVA p < 0.001, R2 = 0.028) community composition differed significantly between homes of cases and controls. Pair-wise differential abundance analysis using both DESEq2 and MaAsLin2 consistently identified the bacterial phyla Deinococcota (Benjamini-Hochberg (BH) adjusted p-value <0.001) and Bacteriodota (BH-adjusted p-value = 0.004) to be negatively associated with LRTI. Within the fungal microbiota, phylum Ascomycota abundance (BH adjusted p-value <0.001) was observed to be directly associated with LRTI, while Basidiomycota abundance (BH adjusted p-value <0.001) was negatively associated with LRTI. Our study suggests that early-life exposure to certain airborne bacterial and fungal communities is associated with LRTI among children under the age of five years
    corecore