31 research outputs found
Activation of Coagulation and Proinflammatory Pathways in Thrombosis with Thrombocytopenia Syndrome and Following COVID-19 Vaccination
Thrombosis with thrombocytopenia syndrome (TTS) is a rare but potentially severe adverse event following immunization with adenovirus vector-based COVID-19 vaccines such as Ad26.COV2.S (Janssen) and ChAdOx1 (AstraZeneca). However, no case of TTS has been reported in over 1.5 million individuals who received a second immunization with Ad26.COV2.S in the United States. Here we utilize transcriptomic and proteomic profiling to compare individuals who receive two doses of Ad26.COV2.S with those vaccinated with BNT162b2 or mRNA-1273. Initial Ad26.COV2.S vaccination induces transient activation of platelet and coagulation and innate immune pathways that resolve by day 7; by contrast, patients with TTS show robust upregulation of these pathways on days 15-19 following initial Ad26.COV2.S vaccination. Meanwhile, a second immunization or a reduced initial dose of Ad26.COV2.S induces lower activation of these pathways than does the full initial dose. Our data suggest a role of coagulation and proinflammatory pathways in TTS pathogenesis, which may help optimize vaccination regimens to reduce TTS risk
Recommended from our members
Adenovirus prime, Env protein boost vaccine protects against neutralization-resistant SIVsmE660 variants in rhesus monkeys
Previous studies have shown that DNA prime, Ad5 boost vaccines protect against neutralization-sensitive but not neutralization-resistant virus variants within the SIVsmE660 swarm. Here we show that Ad prime, Env protein boost vaccines protect against neutralization-resistant SIVsmE660 variants. We perform two studies in rhesus monkeys with Ad35/Ad26 vectors expressing SIVmac239 Gag/Pol/Env with or without an AS01B-adjuvanted SIVmac32H gp140 protein boost. In a repetitive, low-dose challenge study, we observe robust protection against acquisition of infection by both Ad Alone and Ad/Env vaccines. In a single, high-dose challenge study, only the Ad/Env vaccine affords significant protection against acquisition of infection. Analysis of transmitted/founder (T/F) viruses from this study demonstrates that the Ad/Env vaccine blocks both neutralization-sensitive and neutralization-resistant SIVsmE660 variants in rhesus monkeys with restrictive TRIM5α alleles. These data demonstrate that the adjuvanted Env protein boost is critical for protecting against high-dose SIVsmE660 challenge and for blocking neutralization-resistant viruses within the SIVsmE660 swarm
Recommended from our members
Adenovirus prime, Env protein boost vaccine protects against neutralization-resistant SIVsmE660 variants in rhesus monkeys
Previous studies have shown that DNA prime, Ad5 boost vaccines protect against neutralization-sensitive but not neutralization-resistant virus variants within the SIVsmE660 swarm. Here we show that Ad prime, Env protein boost vaccines protect against neutralization-resistant SIVsmE660 variants. We perform two studies in rhesus monkeys with Ad35/Ad26 vectors expressing SIVmac239 Gag/Pol/Env with or without an AS01B-adjuvanted SIVmac32H gp140 protein boost. In a repetitive, low-dose challenge study, we observe robust protection against acquisition of infection by both Ad Alone and Ad/Env vaccines. In a single, high-dose challenge study, only the Ad/Env vaccine affords significant protection against acquisition of infection. Analysis of transmitted/founder (T/F) viruses from this study demonstrates that the Ad/Env vaccine blocks both neutralization-sensitive and neutralization-resistant SIVsmE660 variants in rhesus monkeys with restrictive TRIM5α alleles. These data demonstrate that the adjuvanted Env protein boost is critical for protecting against high-dose SIVsmE660 challenge and for blocking neutralization-resistant viruses within the SIVsmE660 swarm
Comparison of Subgenomic and Total RNA in SARS-CoV-2 Challenged Rhesus Macaques
Respiratory virus challenge studies involve administration of the challenge virus and sampling to assess for protection from the same anatomical locations. It can therefore be difficult to differentiate actively replicating virus from input challenge virus. For SARS-CoV-2, specific monitoring of actively replicating virus is critical to investigate the protective and therapeutic efficacy of vaccines, monoclonal antibodies, and antiviral drugs. We developed a SARS-CoV-2 subgenomic RNA (sgRNA) RT-PCR assay to differentiate productive infection from inactivated or neutralized virus. Subgenomic RNAs are generated after cell entry and are poorly incorporate into mature virions, and thus may provide a marker for actively replicating virus. We show envelope (E) sgRNA was degraded by RNase in infected cell lysates, while genomic RNA (gRNA) was protected, presumably due to packaging into virions. To investigate the capacity of the sgRNA assay to distinguish input challenge virus from actively replicating virus in vivo, we compared the E sgRNA assay to a standard nucleoprotein (N) or E total RNA assay in convalescent rhesus macaques and in antibody-treated rhesus macaques after experimental SARS-CoV-2 challenge. In both studies, the E sgRNA assay was negative, suggesting protective efficacy, whereas the N and E total RNA assays remained positive. These data suggest the potential utility of sgRNA to monitor actively replicating virus in prophylactic and therapeutic SARS-CoV-2 studies. Importance: Developing therapeutic and prophylactic countermeasures for the SARS-CoV-2 virus is a public health priority. During challenge studies, respiratory viruses are delivered and sampled from the same anatomical location. It is therefore important to distinguish actively replicating virus from input challenge virus. The most common assay for detecting SARS-CoV-2 virus, reverse transcription polymerase chain reaction (RT-PCR) targeting nucleocapsid total RNA, cannot distinguish neutralized input virus from replicating virus. In this study, we assess SARS-CoV-2 subgenomic RNA as a potential measure of replicating virus in rhesus macaques
Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays
Pseudotyped viruses are valuable tools for studying virulent or lethal viral pathogens that need to be handled in biosafety level 3 (BSL-3) or higher facilities. With the explosive spread of the coronavirus disease 2019 (COVID-19) pandemic, the establishment of a BSL-2 adapted SARS-CoV-2 pseudovirus neutralization assay is needed to facilitate the development of countermeasures. Here we describe an approach to generate a single-round lentiviral vector-based SARS-CoV-2 pseudovirus, which produced a signal more than 2 logs above background. Specifically, a SARS-CoV-2 spike variant with a cytoplasmic tail deletion of 13 amino acids, termed SΔCT13, conferred enhanced spike incorporation into pseudovirions and increased viral entry into cells as compared with full-length spike (S). We further compared S and SΔCT13 in terms of their sensitivity to vaccine sera, purified convalescent IgG, hACE2-mIgG, and the virus entry inhibitor BafA1. We developed a SΔCT13-based pseudovirus neutralization assay and defined key assay characteristics, including linearity, limit of detection, and intra- and intermediate-assay precision. Our data demonstrate that the SΔCT13-based pseudovirus shows enhanced infectivity in target cells, which will facilitate the assessment of humoral immunity to SARS-CoV-2 infection, antibody therapeutics, and vaccination. This pseudovirus neutralization assay can also be readily adapted to SARS-CoV-2 variants that emerge. IMPORTANCE SARS-CoV-2 is the etiologic agent of the COVID-19 pandemic. The development of a high throughput pseudovirus neutralization assay is critical for the development of vaccines and immune-based therapeutics. In this study, we show that deletion of the cytoplasmic tail of the SARS-CoV-2 spike leads to pseudoviruses with enhanced infectivity. This SΔCT13-based pseudovirus neutralization assay should be broadly useful for the field
Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys
Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific monoclonal antibodies, as well as the single glycan-dependent monoclonal antibody PGT121, resulted in a rapid and precipitous decline of plasma viraemia to undetectable levels in rhesus monkeys chronically infected with the pathogenic simian–human immunodeficiency virus SHIV-SF162P3. A single monoclonal antibody infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes without the development of viral resistance. Moreover, after monoclonal antibody administration, host Gag-specific T-lymphocyte responses showed improved functionality. Virus rebounded in most animals after a median of 56 days when serum monoclonal antibody titres had declined to undetectable levels, although, notably, a subset of animals maintained long-term virological control in the absence of further monoclonal antibody infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of monoclonal antibody therapy for HIV-1 in humans.National Institutes of Health (U.S.) (AI055332)National Institutes of Health (U.S.) (AI060354)National Institutes of Health (U.S.) (AI078526)National Institutes of Health (U.S.) (AI084794)National Institutes of Health (U.S.) (AI095985)National Institutes of Health (U.S.) (AI096040)National Institutes of Health (U.S.) (AI100148)National Institutes of Health (U.S.) (AI10063)Bill & Melinda Gates Foundation (OPP1033091)Bill & Melinda Gates Foundation (OPP1033115)Bill & Melinda Gates Foundation (OPP1040741)Bill & Melinda Gates Foundation (OPP1040753)Ragon Institute of MGH, MIT, and HarvardStavros S. Niarchos FoundationHoward Hughes Medical Institute (Investigator
Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis
Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the
world's most devastating diseases. The first vaccine the majority of
infants born in Africa receive is Mycobacterium bovis bacillus
Calmette-Guérin (BCG) as a prevention against TB. BCG protects against
disseminated disease in the first 10 years of life, but provides a variable
protection against pulmonary TB and enhancing boost delivered by recombinant
modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of
M. tuberculosis is currently in phase IIb evaluation in
African neonates. If the newborn's mother is positive for human
immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring
HIV-1 through breastfeeding. We suggested that a vaccination consisting of
recombinant BCG expressing HIV-1 immunogen administered at birth followed by a
boost with rMVA sharing the same immunogen could serve as a strategy for
prevention of mother-to-child transmission of HIV-1 and rMVA expressing an
African HIV-1-derived immunogen HIVA is currently in phase I trials in African
neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1
and TB consisting of BCG.HIVA administered at birth followed by a boost with
MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed,
in which the transgene transcription is driven by either modified H5 or short
synthetic promoters, respectively, and tested for immunogenicity alone and in
combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless
and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher
levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c
mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced
robust T cell responses to both HIV-1 and M. tuberculosis.
Therefore, proof-of-principle for a dual anti-HIV-1/M.
tuberculosis infant vaccine platform is established. Induction of
immune responses against these pathogens soon after birth is highly desirable
and may provide a basis for lifetime protection maintained by boosts later in
life
Lack of Protection following Passive Transfer of Polyclonal Highly Functional Low-Dose Non-Neutralizing Antibodies
Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC), are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC), we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP) were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments
Recommended from our members
Vaccine Protection Against Zika Virus from Brazil
Zika virus (ZIKV) is a flavivirus that is responsible for an unprecedented current epidemic in Brazil and the Americas1,2. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans3–8 and mice9–11. The rapid development of a safe and effective ZIKV vaccine is a global health priority1,2, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization of a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a ZIKV outbreak strain from northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice11. We produced DNA vaccines expressing full-length ZIKV pre-membrane and envelope (prM-Env) as well as a series of deletion mutants. The full-length prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV as measured by absence of detectable viremia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and CD4 and CD8 T lymphocyte depletion in vaccinated mice did not abrogate protective efficacy. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans will likely be readily achievable
Potently neutralizing and protective human antibodies against SARS-CoV-2
The COVID-19 pandemic is a major threat to global health1 for which there are limited medical countermeasures2,3. Moreover, we currently lack a thorough understanding of mechanisms of humoral immunity4. From a larger panel of human monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein5, we identified several that exhibited potent neutralizing activity and fully blocked the receptor-binding domain of S (SRBD) from interacting with human ACE2 (hACE2). Competition-binding, structural, and functional studies allowed clustering of the mAbs into classes recognizing distinct epitopes on the SRBD as well as distinct conformational states of the S trimer. Potent neutralizing mAbs recognizing non-overlapping sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two mouse models of SARS-CoV-2 infection, passive transfer of either COV2-2196 or COV2-2130 alone or a combination of both mAbs protected mice from weight loss and reduced viral burden and inflammation in the lung. In addition, passive transfer of each of two of the most potently ACE2 blocking mAbs (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutics