15 research outputs found

    Symmetry and asymmetry in electrocatalysis: enhancing the electrocatalytic activity of phthalocyanines through synergy with doped graphene quantum dots

    Get PDF
    An exploration on the enhancement of the electrocatalytic activity of phthalocyanines (Pcs) through coupling with a series of graphene quantum dots (GQDs) is undertaken. The preliminary studies using symmetrical Pcs, a cobalt and an iron chloride tetra substituted diethylaminophenoxy Pc (complexes 1 and 2), for the electro-oxidation of nitrite revealed through the various sequential modifications that doped GQDs fare better than their pristine counterparts with respect to improving the electrocatalytic behaviour of Pcs, in particular, the nitrogen-doped GQDs (NGQDs). Following up on this, a series of asymmetric Pc complexes; 2,9,16-tris-(4-tert-butylphenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (3), 2,9,16-tris-(4-tert-butylphenoxy) mono aminophenoxy phthalocyanato cobalt (II) (4), 2,9,16-tris-(3-diethylamino)phenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (5) and 2,9,16-tris-(3-diethylamino)phenoxy) mono aminophenoxy phthalocyanato cobalt (II) (6) was prepared in which push-pull systems were compared to other asymmetric complexes that lack this effect towards the electrocatalytic sensing of hydrazine. All asymmetric complexes (3-6) were π-stacked to the NGQDs while those with an NH2 group (4 and 6), were also covalently linked to the NGQDs. These complexes and their corresponding conjugates were characterized accordingly and applied as electrocatalysts in the oxidation of hydrazine. The electrochemical studies revealed that π π stacking yields better responses (higher sensitivities and lower limits of detection) than covalent linking because there are less forces acting on the graphene network. Covalent linking introduces both tensile and compressive forces which in turn results in an increase in the ID/IG ratio and that is unfavourable for electrocatalysis. In comparing the electrodes composed of the π-stacked conjugates to those altered through sequential modifications, despite the conditions not being the same, it can be inferred that the magnitude of the electrostatic forces between the Pcs and the GQDs also plays a significant role in electrocatalysis. The π-stacked conjugates, owing to the manner in which they were prepared, have stronger electrostatic forces acting between the Pc and GQDs hence they were able to elicit a better electrochemical response than the sequentially modified electrodes. In addition to that, it appears that asymmetric Pcs are better electrocatalysts in comparison to the symmetric Pcs

    Electrochemical Detection of Nitrite on Electrodes Modified by Click Chemistry Using Asymmetrical Co (II) and Mn (III) Phthalocyanines Containing Push-Pull Substituents

    Get PDF
    The more conventional route to synthesizing asymmetric push-pull phthalocyanines (Pcs) involves pairing electron-donating substituents with electron-withdrawing groups in either an A3B or AB3 manner. In this work, a push-pull system fashioned from a substituent bearing different functional groups was created. Symmetric and asymmetric cobalt and manganese Pcs in which acetaminophen was the dominant substituent were synthesized where the asymmetric analogues bore an alkyne-terminated substituent. These complexes were applied as sensors towards the electro-oxidation of nitrite. In addition to comparing the asymmetric Pcs to the symmetric counterparts, an assessment on the different central metals as well as the method of electrode modification was made. From the studies performed, the results showed that the manganese complexes are generally better suited (more so when clicked on to the electrode) in the electrocatalysis of nitrite with a limit of detection and a catalytic rate values of 2.15 μM and 6.91 × 106 s−1 M−1 being recorded for the asymmetric MnPc

    Assessing the electrocatalytic activity of a localized push-pull system in cobalt phthalocyanine/graphene quantum dot hybrids

    Get PDF
    In this study, two cobalt phthalocyanines (asymmetric complex 1) and symmetric (complex 2) were synthesized and conjugated to nitrogen-doped graphene quantum dots (NGQDs) through covalent and non-covalent means to create Co phthalocyanine (CoPc)-NGQDs hybrid systems. The CoPcs and conjugates were applied as electrode modifiers on a glassy carbon electrode in the electrochemical sensing of nitrite. Of the CoPcs alone, complex 1 performed better than complex 2 regarding the limits of detection (LoD) recorded (5.74 μM for 1 and 15.1 μM for 2). Regarding the conjugates/nanocomposites, the π-π stacked conjugate derived from complex 2 (2πNGQDs) demonstrated highly favourable electrochemical potential with an LoD value of 0.70 μM. The nanocomposites fashioned from complex 1 were marred by a reduced loading which rendered the conjugates poor electrochemical sensors. These observations however do not disqualify GQDs as complementary nanomaterials to phthalocyanines but rather shed light on seeking alternative routes to increasing the Pc loading in conjugates (more so in π-π stacked conjugates)

    Analytical Detection and Electrocatalysis of Paracetamol in Aqueous Media Using Rare‐Earth Double‐Decker Phthalocyaninato Chelates as Electrochemically Active Materials

    Get PDF
    Paracetamol (PA), being an analgesic and antipyretic medicine, can cause fatal hepatotoxicity and nephrotoxicity when overdosed. It is therefore important to develop electrochemical sensors that can monitor and quantify it in aquatic environments. In this study, rare-earth sandwich-type phthalocyaninato chelates based on neodymium (1 a) and samarium (1 b) were employed as electrocatalysts to modify glassy carbon electrodes (GCE) for the first time. It was found that 1 a-modified GCE (herein referred to as 1 a-GCE) is less conductive than 1 b-modified counterpart (1 b-GCE). A larger rate constant was also obtained for 1 b-GCE. It was established that a faster oxidation rate efficiency was responsible for lower limit of detection value obtained for 1 b-GCE as compared to 1 a-GCE

    The Primary Demonstration of Exciton Coupling Effects on Optical Limiting Properties of Blue Double-Decker Lanthanide Phthalocyanine Salts

    Get PDF
    In this manuscript, novel green and blue sandwich-type rare-earth phthalocyanines (LnPc2) are presented. This parent green LnPc2 complex is named bis-{2(3),9(10),16(17),23(24)-tetra(4-tert-buylphenoxy) phthalocyaninato} neodymium (III) (2) and modified into blue LnPc2 complexes (3), (4) and (5) based on hexadecyltrimethylammonium ion, mononeodymium(III) diacetate and monodysprosium(III) diacetate as counter ions, respectively. These stable blue lanthanide Pc salts are highly soluble in many organic and inorganic solvents. All complexes 2, 3, 4 and 5 were studied for optical limiting for the first time using Z-scan at nanosecond regime in the visible absorption spectral wavelength (532 nm). Our studies reveal the advantage of exciton coupling in blue sandwich-type rare-earth phthalocyanines over the π-radicals (characterized by blue valence at 485 nm) in the green counterpart which are in resonance with the 532 nm wavelength for optical limiting application. Large singlet ground state to excited state absorption cross section ratios were found, particularly for complex 5 in comparison to that of complex 2

    The synergistic effects of coupling Au nanoparticles with an alkynyl Co (II) phthalocyanine on the detection of prostate specific antigen

    Get PDF
    Prostate specific antigen (PSA) aptasensors are fabricated using a novel asymmetrically substituted Co phthalocyanine (CoPc), gold nanoparticles (AuNPs) and PSA-specific antigen. The fabricated aptasensors are: GCE-AuNPs-Aptamer, GCE@CoPc-Aptamer and GCE-AuNPs@CoPc-Aptamer (GCE = glassy carbon electrode). The fabricated sensors are characterized at each modification step to monitor the changes occurring at the sensor surface. Concentration studies were carried out using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) to determine detection limits. All the fabricated aptasensors were found to be highly specific and selective but the GCE-AuNPs@CoPc-Aptamer nanoconjugate performed the best. The aptasensors were also tested in spiked serum samples and detection limits, as well as % recoveries were determined. The results obtained showed that the GCE-AuNPs@CoPc-Aptamer has the potential to be used for clinical studies as the results agree with those obtained for detection of PSA in buffer

    Synthesis and photophysical properties of BODIPY-decorated graphene quantum dot–phthalocyanine conjugates

    Get PDF
    This work reports on the synthesis and characterisation of novel supramolecular hybrids containing BODIPY-decorated graphene quantum dots (BODIPY@GQDs) and zinc phthalocyanine. Graphene quantum dots (GQDs) were functionalized with L-glutathione (GSH) in order to assist coupling to the BODIPY dye. {2,9(10)16(17)23(24)-Tetrakis-[3-(diethylamino)phenoxy]phthalocyaninato}zinc(II) (1) was immobilized via π–π stacking interaction on the BODIPY-decorated GQDs and pristine GQDs to form the supramolecular hybrids 1-BODIPY@GQDs and 1-GQDs, respectively. The photophysical and photochemical properties of these conjugates were investigated. Energy transfer occurred from the (i) GQDs to BODIPY, (ii) GQDs to 1, and (iii) BODIPY@GQDs to 1via fluorescence resonance energy transfer (FRET). The highest FRET efficiency was observed for the BODIPY@GQDs (0.93). The introduction of the BODIPY core to the GQD structure resulted in higher triplet, and singlet oxygen quantum yields for the resultant Pc/GQD hybrid (1-BODIPY@GQDs). The zeta potential values obtained imply a high colloidal stability for the supramolecular hybrids. The results suggest that such hybrids may be applied in fields such as photodynamic therapy (PDT), where a high singlet oxygen quantum yield is desired

    Enhancing the electrocatalytic activity of phthalocyanines through finding the ideal combination of substituents in push-pull phthalocyanine-based systems

    Get PDF
    Phthalocyanines (Pcs) are a class of synthetic pigments with a similar structure to porphyrins. The work presented in this thesis is centred around these electron-rich macrocycles and their use in electrocatalysis. This body of work provides a more rigorous analysis on asymmetric Pcs, focusing on finding the “ideal” combination of substituents in the synthesis of A3B-type Pcs and how these asymmetric structures compare with their symmetric counterparts (A4) in the electrocatalysis of hydrazine and nitrite. The choice in substituents in the syntheses of the Pcs was such that there is both electron-donating and electron-withdrawing groups to induce a push-pull effect. In the studies involving the electrocatalysis of hydrazine, asymmetric cobalt Pcs (CoPcs) possessing alkyl groups as the primary substituents, with variations in the acid-containing group, along with their symmetric counterparts, probes with potential for further improvement were identified. Using voltammetric and amperometric techniques, the analyte-electrode kinetics, mechanism in which the electrochemical reaction proceeds along with the limits of detection (LoD) were determined. In the general sense, the pentadecylphenoxy-derived CoPcs performed better than those containing the tert-butyl substituent as the dominant substituent with the asymmetric CoPcs producing more favourable results than their symmetric analogues. With respect to the probes designed for nitrite, a multi-dimensional approach was undertaken in that acetaminophen was chosen as the primary substituent whilst multiple changes in the asymmetric component were made. In addition to varying the carboxylic acid-containing substituent, alkyne- and amine-based substituents were also explored in which the alkyne-containing Pc was anchored onto the electrode surface through click chemistry while the amine-bearing Pc was covalently linked (and π-stacked) to nitrogen-doped graphene quantum dots (NGQDs). Another component that was altered was the central metal where CoPcs were compared to manganese Pcs (MnPcs). The most desirable peak oxidation potential for nitrite was observed in the MnPcs as it was the lowest with adsorption sometimes being a better suited method of electrode modification relative to clicking. The inclusion of NGQDs was found to be beneficial when combined with the symmetric CoPc whilst in the presence of an asymmetric Pc complex, less desirable results were observed. Overall, there were variations in the results with the symmetric CoPc sometimes being better than some of the asymmetric CoPcs demonstrating that a blanket-approach in terms of synthesizing and applying asymmetric Pcs is not always viable.Thesis (PhD) -- Faculty of Science, Chemistry, 202

    Creating the Ideal Push-Pull System for Electrocatalysis A Comparative Study on Symmetrical and Asymmetrical Cardanol-based Cobalt Phthalocyanines

    Get PDF
    A symmetrical cardanol-based cobalt phthalocyanine (Pc) along with its asymmetrical acid-based derivatives were synthesized and applied in the electrocatalysis of hydrazine. Despite the inhibition of electron movement by the bulky cardanol-based substituent throughout the series of molecules, an ideal combination of substituents was established in GCE-3 (2,9,16-tris(3- pentadecylphenoxy)-23-mono propionic acid phthalocyanato cobalt (II)) where a limit of detection (LoD) value of 5.10 μM (signal to noise ratio=5) was recorded for the detection of hydrazine. The results obtained serve as an illustration that the combination of electron-donating and electron-withdrawing substituents has a significant influence on the complete functioning of the phthalocyanine molecule(s) being investigated

    Electrochemical Detection of Nitrite on Electrodes Modified by Click Chemistry Using Asymmetrical Co (II) and Mn (III) Phthalocyanines Containing Push-Pull Substituents

    Get PDF
    The more conventional route to synthesizing asymmetric push-pull phthalocyanines (Pcs) involves pairing electron-donating substituents with electron-withdrawing groups in either an A3B or AB3 manner. In this work, a push-pull system fashioned from a substituent bearing different functional groups was created. Symmetric and asymmetric cobalt and manganese Pcs in which acetaminophen was the dominant substituent were synthesized where the asymmetric analogues bore an alkyne-terminated substituent. These complexes were applied as sensors towards the electro-oxidation of nitrite. In addition to comparing the asymmetric Pcs to the symmetric counterparts, an assessment on the different central metals as well as the method of electrode modification was made. From the studies performed, the results showed that the manganese complexes are generally better suited (more so when clicked on to the electrode) in the electrocatalysis of nitrite with a limit of detection and a catalytic rate values of 2.15 μM and 6.91 × 106 s−1 M−1 being recorded for the asymmetric MnPc
    corecore