3 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The East African Community (EAC) mobile laboratory networks in Kenya, Burundi, Tanzania, Rwanda, Uganda, and South Sudan—from project implementation to outbreak response against Dengue, Ebola, COVID-19, and epidemic-prone diseases

    Get PDF
    Background!#!East Africa is home to 170 million people and prone to frequent outbreaks of viral haemorrhagic fevers and various bacterial diseases. A major challenge is that epidemics mostly happen in remote areas, where infrastructure for Biosecurity Level (BSL) 3/4 laboratory capacity is not available. As samples have to be transported from the outbreak area to the National Public Health Laboratories (NPHL) in the capitals or even flown to international reference centres, diagnosis is significantly delayed and epidemics emerge.!##!Main text!#!The East African Community (EAC), an intergovernmental body of Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan, received 10 million € funding from the German Development Bank (KfW) to establish BSL3/4 capacity in the region. Between 2017 and 2020, the EAC in collaboration with the Bernhard-Nocht-Institute for Tropical Medicine (Germany) and the Partner Countries' Ministries of Health and their respective NPHLs, established a regional network of nine mobile BSL3/4 laboratories. These rapidly deployable laboratories allowed the region to reduce sample turn-around-time (from days to an average of 8h) at the centre of the outbreak and rapidly respond to epidemics. In the present article, the approach for implementing such a regional project is outlined and five major aspects (including recommendations) are described: (i) the overall project coordination activities through the EAC Secretariat and the Partner States, (ii) procurement of equipment, (iii) the established laboratory setup and diagnostic panels, (iv) regional training activities and capacity building of various stakeholders and (v) completed and ongoing field missions. The latter includes an EAC/WHO field simulation exercise that was conducted on the border between Tanzania and Kenya in June 2019, the support in molecular diagnosis during the Tanzanian Dengue outbreak in 2019, the participation in the Ugandan National Ebola response activities in Kisoro district along the Uganda/DRC border in Oct/Nov 2019 and the deployments of the laboratories to assist in SARS-CoV-2 diagnostics throughout the region since early 2020.!##!Conclusions!#!The established EAC mobile laboratory network allows accurate and timely diagnosis of BSL3/4 pathogens in all East African countries, important for individual patient management and to effectively contain the spread of epidemic-prone diseases
    corecore