88 research outputs found

    Association of dementia with mortality among adults with down syndrome older than 35 years

    Get PDF
    Importance: This work quantifies the fatal burden of dementia associated with Alzheimer disease in individuals with Down syndrome (DS). Objective: To explore the association of dementia associated with Alzheimer disease with mortality and examine factors associated with dementia in adults with DS. Design, Settings and Participants: Prospective longitudinal study in a community setting in England. Data collection began March 29, 2012. Cases were censored on December 13, 2017. The potential sample consisted of all adults 36 years and older from the London Down Syndrome Consortium cohort with 2 data times and dementia status recorded (N = 300); 6 withdrew from study, 28 were lost to follow-up, and 55 had a single data collection point at time of analysis. The final sample consisted of 211 participants, with 503.92 person-years' follow-up. Exposures: Dementia status, age, sex, APOE genotype, level of intellectual disability, health variables, and living situation. Main Outcomes and Measures: Crude mortality rates, time to death, and time to dementia diagnosis with proportional hazards of predictors. Results: Of the 211 participants, 96 were women (45.5%) and 66 (31.3%) had a clinical dementia diagnosis. Twenty-seven participants (11 female; mean age at death, 56.74 years) died during the study period. Seventy percent had dementia. Crude mortality rates for individuals with dementia (1191.85 deaths per 10 000 person-years; 95% CI, 1168.49-1215.21) were 5 times higher than for those without (232.22 deaths per 10 000 person-years; 95% CI, 227.67-236.77). For those with dementia, APOE ε4 carriers had a 7-fold increased risk of death (hazard ratio [HR], 6.91; 95% CI, 1.756-27.195). For those without dementia, epilepsy with onset after age 36 years was associated with mortality (HR, 9.66; 95% CI, 1.59-58.56). APOE ε4 carriers (HR, 4.91; 95% CI, 2.53-9.56), adults with early-onset epilepsy (HR, 3.61; 95% CI, 1.12-11.60), multiple health comorbidities (HR, 1.956; 95% CI, 1.087-3.519), and those living with family (HR, 2.14; 95% CI, 1.08-4.20) received significantly earlier dementia diagnoses. Conclusions and Relevance: Dementia was associated with mortality in 70% of older adults with DS. APOE ε4 carriers and/or people with multiple comorbid health conditions were at increased risk of dementia and death, highlighting the need for good health care. For those who died without a dementia diagnosis, late-onset epilepsy was the only significant factor associated with death, raising questions about potentially undiagnosed dementia cases in this group

    Differential co-assembly of α1-GABAARs associated with epileptic encephalopathy

    Get PDF
    GABAA receptors (GABAARs) are profoundly important for controlling neuronal excitability. Spontaneous and familial mutations to these receptors feature prominently in excitability disorders and neurodevelopmental deficits following disruption to GABA-mediated inhibition. Recent genotyping of an individual with severe epilepsy and Williams-Beuren Syndrome identified a frameshifting de novo variant in a major GABAAR gene, GABRA1. This truncated the α1 subunit between the third and fourth transmembrane domains and introduced 24 new residues forming the mature protein, α1Lys374Serfs*25 Cell surface expression of mutant murine GABAARs is severely impaired compared to wild-type, due to retention in the endoplasmic reticulum. Mutant receptors were differentially co-expressed with β3, but not with β2 subunits in mammalian cells. Reduced surface expression was reflected by smaller inhibitory postsynaptic currents, which may underlie the induction of seizures. The mutant does not have a dominant negative effect on native neuronal GABAAR expression since GABA current density was unaffected in hippocampal neurons, even though mutant receptors exhibited limited GABA sensitivity. To date, the underlying mechanism is unique for epileptogenic variants and involves differential β subunit expression of GABAAR populations, which profoundly affected receptor function and synaptic inhibition.SIGNIFICANCE STATEMENTGABAARs are critical for controlling neural network excitability. They are ubiquitously distributed throughout the brain and their dysfunction underlies many neurological disorders, especially epilepsy. Here we report the characterisation of an α1-GABAAR variant that results in severe epilepsy. The underlying mechanism is structurally unusual, with the loss of part of the α1 subunit transmembrane domain and part-replacement with nonsense residues. This led to compromised and differential α1-subunit cell surface expression with β subunits resulting in severely reduced synaptic inhibition. Our study reveals that disease-inducing variants can affect GABAAR structure, and consequently subunit assembly and cell surface expression, critically impacting on the efficacy of synaptic inhibition, a property that will orchestrate the extent and duration of neuronal excitability

    Trisomic dose of several chromosome 21 genes perturbs haematopoietic stem and progenitor cell differentiation in Down's syndrome

    Get PDF
    Children with Down's syndrome (DS) have 20–50-fold higher incidence of all leukaemias (lymphoid and myeloid), for reasons not understood. As incidence of many solid tumours is much lower in DS, we speculated that disturbed early haematopoietic differentiation could be the cause of increased leukaemia risk. If a common mechanism is behind the risk of both major leukaemia types, it would have to arise before the bifurcation to myeloid and lymphoid lineages. Using the transchromosomic system (mouse embryonic stem cells (ESCs)) bearing an extra human chromosome 21 (HSA21)) we analyzed the early stages of haematopoietic commitment (mesodermal colony formation) in vitro. We observed that trisomy 21 (T21) causes increased production of haemogenic endothelial cells, haematopoietic stem cell precursors and increased colony forming potential, with significantly increased immature progenitors. Transchromosomic colonies showed increased expression of Gata-2, c-Kit and Tie-2. A panel of partial T21 ESCs allowed us to assign these effects to HSA21 sub-regions, mapped by 3.5 kbp-resolution tiling arrays. The Gata-2 increase on one side, and c-Kit and Tie-2 increases on the other, could be attributed to two different, non-overlapping HSA21 regions. Using human-specific small interfering RNA silencing, we could demonstrate that an extra copy of RUNX1, but not ETS-2 or ERG, causes an increase in Tie-2/c-Kit levels. Finally, we detected significantly increased levels of RUNX1, C-KIT and PU.1 in human foetal livers with T21. We conclude that overdose of more than one HSA21 gene contributes to the disturbance of early haematopoiesis in DS, and that one of the contributors is RUNX1. As the observed T21-driven hyperproduction of multipotential immature precursors precedes the bifurcation to lymphoid and myeloid lineages, we speculate that this could create conditions of increased chance for acquisition of pre-leukaemogenic rearrangements/mutations in both lymphoid and myeloid lineages during foetal haematopoiesis, contributing to the increased risk of both leukaemia types in DS

    Comparison of Receptive Verbal Abilities Assessed Using the KBIT-2 and BPVS3 in Adults With Down Syndrome

    Get PDF
    Down syndrome (DS) is the most common genetic cause of intellectual disability. There is, however, considerable variation in cognitive abilities between those with DS, with some individuals scoring at floor on some tests, particularly for age-standardised outcomes. This variation and these floor effects can pose a problem for comparing and combining study populations when different standardised measures have been used to assess individuals’ cognitive abilities, for example combining results across studies to investigate genetic or other factors associated with cognitive abilities. To facilitate this comparison and combination of study populations assessed using different tests of verbal abilities, we administered two commonly used standardised tests of receptive language, the Kaufmann Brief Intelligence Test 2 (KBIT-2) verbal scale and the British Picture Vocabulary Scale 3 (BPVS3) to 34 adults with DS (age range 19–59) to investigate relationships between outcomes for these two tests. We found a very strong correlation between raw scores for the KBIT-2 verbal scale and the BPVS3, and determined equations to convert between scores for the two tests. Intraclass correlations between the two scales for age-equivalents and calculated z scores relative to population norms were also strong, though scores for both outcomes were significantly higher for the KBIT-2 verbal scale compared to the BPVS3. This deviation in scores between the two tests was greater as z scores decreased for both tests (i.e., for lower scoring individuals), with no such relationship observed for age-equivalents. These results indicate the conversion of raw scores between the KBIT-2 verbal scale and the BPVS3 may be a more valid method for the comparison or combination of study samples with DS compared to the use of standardised scores. Such comparisons or combinations will aid our understanding of cognitive variations and factors associated with these variations within the population with DS

    Validating the Cognitive Scale for Down Syndrome (CS-DS) to Detect Longitudinal Cognitive Decline in Adults With Down Syndrome

    Get PDF
    Down syndrome (DS) is associated with intellectual disability and an ultra-high risk of developing dementia. Informant ratings are invaluable to assess abilities and related changes in adults with DS, particularly for those with more severe intellectual disabilities and/or cognitive decline. We previously developed the informant rated Cognitive Scale for Down Syndrome (CS-DS) to measure everyday cognitive abilities across memory, executive function, and language domains in adults with DS, finding CS-DS scores are a valid measure of general abilities, and are significantly lower for those with noticeable cognitive decline compared to those without decline. To further test the validity of the CS-DS in detecting changes associated with cognitive decline we collected longitudinal data across two time points, approximately 1.5–2 years apart, for 48 adults with DS aged 36 years and over. CS-DS total scores (78.83 ± 23.85 vs. 73.83 ± 25.35, p = 0.042) and executive function scores (46.40 ± 13.59 vs. 43.54 ± 13.60, p = 0.048) significantly decreased between the two time points, with scores in the memory domain trending towards a significant decrease (22.19 ± 8.03 vs. 20.81 ± 8.63, p = 0.064). Adults with noticeable cognitive decline at follow-up showed a trend to significantly greater change in total scores (7.81 ± 16.41 vs. 3.59 ± 16.79, p = 0.067) and significantly greater change in executive function scores (5.13 ± 9.22 vs. 1.72 ± 9.97, p = 0.028) compared to those without decline. Change in total scores showed significant correlations with change in scores from other informant measures of everyday adaptive abilities and symptoms associated with dementia, and participant assessment of general cognitive abilities (all p < 0.005), while change in memory scores (R2 = 0.28, p = 0.001) better predicted change in participant cognitive assessment scores than change in executive function (R2 = 0.15, p = 0.016) or language (R2 = 0.15, p = 0.018) scores. These results suggest informants may better detect changes in the executive function domain, while change in informant rated memory scores best predicts change in assessed cognitive ability. Alternatively, memory domain scores may be sensitive to changes across both early and late cognitive decline, whereas executive function domain scores are more sensitive to changes associated with later noticeable cognitive decline. Our results provide further support for the validity of the CS-DS to assess everyday cognitive abilities and to detect associated longitudinal changes in individuals with DS

    Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease

    Get PDF
    BACKGROUND: Down syndrome (DS), caused by chromosome 21 trisomy, is associated with an ultra-high risk of dementia due to Alzheimer’s disease (AD), driven by amyloid precursor protein (APP) gene triplication. Understanding relevant molecular differences between those with DS, those with sporadic AD (sAD) without DS, and controls will aid in understanding AD development in DS. We explored group differences in plasma concentrations of amyloid-β peptides and tau (as their accumulation is a characteristic feature of AD) and cytokines (as the inflammatory response has been implicated in AD development, and immune dysfunction is common in DS). // METHODS: We used ultrasensitive assays to compare plasma concentrations of the amyloid-β peptides Aβ40 and Aβ42, total tau (t-tau), and the cytokines IL1β, IL10, IL6, and TNFα between adults with DS (n = 31), adults with sAD (n = 27), and controls age-matched to the group with DS (n = 27), and explored relationships between molecular concentrations and with age within each group. In the group with DS, we also explored relationships with neurofilament light (NfL) concentration, due to its potential use as a biomarker for AD in DS. // RESULTS: Aβ40, Aβ42, and IL1β concentrations were higher in DS, with a higher Aβ42/Aβ40 ratio in controls. The group with DS showed moderate positive associations between concentrations of t-tau and both Aβ42 and IL1β. Only NfL concentration in the group with DS showed a significant positive association with age. // CONCLUSIONS: Concentrations of Aβ40 and Aβ42 were much higher in adults with DS than in other groups, reflecting APP gene triplication, while no difference in the Aβ42/Aβ40 ratio between those with DS and sAD may indicate similar processing and deposition of Aβ40 and Aβ42 in these groups. Higher concentrations of IL1β in DS may reflect an increased vulnerability to infections and/or an increased prevalence of autoimmune disorders, while the positive association between IL1β and t-tau in DS may indicate IL1β is associated with neurodegeneration. Finally, NfL concentration may be the most suitable biomarker for dementia progression in DS. The identification of such a biomarker is important to improve the detection of dementia and monitor its progression, and for designing clinical intervention studies

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    A simplified analytical approach for evaluation of the optimal ratio of pressure drop across the turbine in solar chimney power plants

    No full text
    In this paper, a simplified analytical approach for evaluating the factor of turbine pressure drop in solar chimney power plants is presented. This characteristic factor (or pressure drop ratio in turbines, according to the total pressure drop in the chimney) is important because it is related to the output power. The determined factor (or ratio) values of the turbine pressure drop are found to be within a value range consistent with other studies. It was concluded that for solar chimney power plants, turbine pressure drop factors are in the range of 0.8-0.9. This simplified analytical approach is useful for preliminary analysis and fast evaluation of the potential of solar chimney power plants.Solar chimney Turbine pressure drop Overall efficiency
    corecore