4 research outputs found

    Exposure to the ROCK inhibitor fasudil promotes gliogenesis of neural stem cells in vitro

    Get PDF
    Fasudil is a clinically approved Rho-associated protein kinase (ROCK) inhibitor that has been used widely to treat cerebral consequences of subarachnoid hemorrhage. It is known to have a positive effect on animal models of neurological disorders including Parkinson's disease and stroke. However, its cellular effect on progenitor populations and differentiation is not clearly understood. While recent studies suggest that fasudil promotes the mobilization of neural stem cells (NSCs) from the subventricular zone in vivo and promotes the differentiation of the C17.2 cerebellar neuroprogenitor line in vitro, it is unclear whether fasudil is involved in the differentiation of primary NSCs. Here, we tested the effect of fasudil on mouse NSCs in vitro, and observed increased gliogenesis in NSCs derived from lateral ventricles. Upon treatment, fasudil promoted characteristics of neurogenesis including phenotypic changes in neural outgrowth and interkinetic nuclear-like movements as an immediate response, while Sox2 expression was maintained and GFAP expression increased. Moreover, the gliogenic response to fasudil medium was observed in both early postnatal and adult NSC cultures. Taken together, our results show that fasudil promotes the differentiation of NSCs into astroglial lineage, suggesting that it could be used to develop novel vitro gliogenesis models and regulate differentiation for neural repair

    Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging

    Get PDF
    Extracellular vesicles (EVs) have prevalent roles in cancer biology and regenerative medicine. Conventional techniques for characterising EVs including electron microscopy (EM), nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS), have been reported to produce high variability in particle count (EM) and poor sensitivity in detecting EVs below 50 nm in size (NTA and TRPS), making accurate and unbiased EV analysis technically challenging. This study introduces direct stochastic optical reconstruction microscopy (d-STORM) as an efficient and reliable characterisation approach for stem cell-derived EVs. Using a photo-switchable lipid dye, d-STORM imaging enabled rapid detection of EVs down to 20–30 nm in size with higher sensitivity and lower variability compared to EM, NTA and TRPS techniques. Imaging of EV uptake by live stem cells in culture further confirmed the potential of this approach for downstream cell biology applications and for the analysis of vesicle-based cell-cell communication
    corecore