51 research outputs found
Performance Analysis in Strength Training: An Innovative Instrumentation
In strength training, the performance of the athletes varies according to different objectives of the training. In this study, the performance of the athlete in strength training is defined as the torque and power generated to lift given loads. Electromyography (EMG) is utilized during the performance assessment to prevent muscle injuries. Over the past few years, athletic and clinical testing on performance analysis and enhancement have traditionally taken place in the laboratory due to the low portability of the equipment. With the rapid development in electronics miniaturization, instrumentation for such data acquisition can be constructed in mini and micro scale. Miniaturized instrumentations are designed to be unobtrusive to athletes’ movement during performance analysis and enhancement. On the other hand, the correlation between muscle activity and real-time data for performance assessment is critical for coaches and physiologists. With the aid of a miniaturized system that can correlate the muscle activity with performance, fatigue, impulse and total energy expenditure, coaches and physiologists can plan the most suitable training for athletes to achieve higher performance. In conclusion, this study focuses on the miniaturized instrumentation for the analysis of athletes’ performance in strength training
Compensating control participants when the intervention is of significant value: experience in Guatemala, India, Peru and Rwanda
The Household Air Pollution Intervention Network (HAPIN) trial is a randomised controlled trial in Guatemala, India, Peru and Rwanda to assess the health impact of a clean cooking intervention in households using solid biomass for cooking. The HAPIN intervention—a liquefied petroleum gas (LPG) stove and 18-month supply of LPG—has significant value in these communities, irrespective of potential health benefits. For control households, it was necessary to develop a compensation strategy that would be comparable across four settings and would address concerns about differential loss to follow-up, fairness and potential effects on household economics. Each site developed slightly different, contextually appropriate compensation packages by combining a set of uniform principles with local community input. In Guatemala, control compensation consists of coupons equivalent to the LPG stove’s value that can be redeemed for the participant’s choice of household items, which could include an LPG stove. In Peru, control households receive several small items during the trial, plus the intervention stove and 1 month of fuel at the trial’s conclusion. Rwandan participants are given small items during the trial and a choice of a solar kit, LPG stove and four fuel refills, or cash equivalent at the end. India is the only setting in which control participants receive the intervention (LPG stove and 18 months of fuel) at the trial’s end while also being compensated for their time during the trial, in accordance with local ethics committee requirements. The approaches presented here could inform compensation strategy development in future multi-country trials
Recommended from our members
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background
Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.
Methods
22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.
Findings
Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.
Interpretation
Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.
Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.
Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.
Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic.
Funding: Bill & Melinda Gates Foundation
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Quality status of groundwater of some selected villages of Bhaluka upazila in Bangladesh for drinking, irrigation and livestock consumption
Groundwater samples of shallow and deep tubewells were collected from the different villages of Bhaluka upazilla in Bangladesh to assess their quality status for drinking, irrigation and livestock consumption. Different parameters of waters were determined to evaluate the quality. All the waters were alkaline in nature and electrical conductivity classified the samples as “good” for irrigation, while the TDS categorized the samples “highest desirable” limit for drinking and “fresh water” for irrigation and were suitable for drinking, irrigation and livestock consumption. Chloride content rated 2 samples unsuitable for livestock consumption. The concentrations of Zn were within safe limit, but Fe and Mn contents rated almost all the samples unsuitable for drinking and livestock consumption.With respect to Cu concentration, 8 samples were found unsuitable for long- term irrigation on all types of soils. Out of 17 samples, 12 samples classified as “excellent”, 4 as “good” and 1 as “doubtful” for irrigation due to different level of B. Ca, Mg, Na, K and P quantities of all the samples were within safe limit. SAR and EC rated all the samples as “medium salinity” and “low alkalinity” class and hardness of most of the waters were “hard water” class for irrigation
Characterization of Fish Protein Hydrolysate from Red Meat of <em>Euthynnus affinis</em> and its Application as an Antioxidant in Iced Sardine
111-119Effective utilization of the fishery waste to produce value-added products has emerged as a priority area for the global seafood industry development. Tuna (Euthynnus affinis) red meat proteins which are generally discarded as waste in canning industry was hydrolysed using papain enzyme (0.5% w/w), and applied as antioxidant in dressed sardine during ice storage. Tuna protein hydrolysate (TPH) comprised of about 89.9 ± 0.6% protein, 1.35 ± 0.15% moisture, 2.71 ± 0.06% fat and 4.03 ± 0.02% ash. A proportional increase in the degree of hydrolysis of tuna protein with time was observed from 14.96% at 15 minutes reaching 22.98% at 45 minutes of hydrolysis. DPPH scavenging activity and reducing power improved with hydrolysis and was found to be 56.82 ± 0.74 % for 2 mg/ml protein and 0.614 ± 0.009 for 10 mg/ml protein, respectively at 45 minutes of hydrolysis. Sardine samples got darkened with storage period as indicated by decreased L* values. Similarly a reduction in hardness value was observed in ice stored sardine samples, more prominent in control compared to treated samples. TBA studies indicated that dip treatment in 0.5% TPH solution significantly reduced (p < 0.05) the oxidation in ice stored dressed sardine compared to control revealing the application of protein hydrolysate as a natural antioxidant in foods
Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials
Leachate is a complex liquid that is often produced from landfills, and it contains hazardous substances that may endanger the surrounding environment if ineffectively treated. In this work, four leachate treatment applications were examined: combined leachate/palm oil mill effluent (POME) (LP), leachate/tannin (LT), pre-(leachate/tannin) followed by post-(leachate/POME) (LT/LP), and pre-(leachate/POME) followed by post-(leachate/tannin) (LP/LT). The aim of this work is to evaluate and compare the performance of these treatment applications in terms of optimizing the physicochemical parameters and removing heavy metals from the leachate. The highest efficiency for the optimization of the most targeted physicochemical parameters and the removal of heavy metals was with the LP/LT process. The results are indicative of three clusters. The first cluster involves raw leachate (cluster 1), the second contains LP and LP/LT (cluster 2), and the third also consists of two treatment applications, namely, LT and LT/LP (cluster 3). The results demonstrate that LP/LT is the most appropriate method for leachate treatment using low-cost agro-industrial materials
- …