95 research outputs found
Feasibility Study of OFDM-MFSK Modulation Scheme for Smart Metering Technology
The Orthogonal Frequency Division Multiplexing based M-ary Frequency Shift
Keying (OFDM-MFSK) is a noncoherent modulation scheme which merges MFSK with
the OFDM waveform. It is designed to improve the receiver sensitivity in the
hard environments where channel estimation is very difficult to perform. In
this paper, the OFDM-MFSK is suggested for the smart metering technology and
its performance is measured and compared with the ordinary OFDM-BPSK. Our
results show that, depending on the MFSK size value (M), the Packet Error Rate
(PER) has dramatically improved for OFDM-MFSK. Additionally, the adaptive
OFDM-MFSK, which selects the best M value that gives the minimum PER and higher
throughput for each Smart Meter (SM), has better coverage than OFDM-BPSK.
Although its throughput and capacity are lower than OFDMBPSK, the connected SMs
per sector are higher. Based on the smart metering technology requirements
which imply the need for high coverage and low amount of data exchanged between
the network and the SMs, The OFDM-MFSK can be efficiently used in this
technology.Comment: 6 pages, 11 figures, ISGT Europe 201
A Link Quality Model for Generalised Frequency Division Multiplexing
5G systems aim to achieve extremely high data rates, low end-to-end latency
and ultra-low power consumption. Recently, there has been considerable interest
in the design of 5G physical layer waveforms. One important candidate is
Generalised Frequency Division Multiplexing (GFDM). In order to evaluate its
performance and features, system-level studies should be undertaken in a range
of scenarios. These studies, however, require highly complex computations if
they are performed using bit-level simulators. In this paper, the Mutual
Information (MI) based link quality model (PHY abstraction), which has been
regularly used to implement system-level studies for Orthogonal Frequency
Division Multiplexing (OFDM), is applied to GFDM. The performance of the GFDM
waveform using this model and the bit-level simulation performance is measured
using different channel types. Moreover, a system-level study for a GFDM based
LTE-A system in a realistic scenario, using both a bit-level simulator and this
abstraction model, has been studied and compared. The results reveal the
accuracy of this model using realistic channel data. Based on these results,
the PHY abstraction technique can be applied to evaluate the performance of
GFDM based systems in an effective manner with low complexity. The maximum
difference in the Packet Error Rate (PER) and throughput results in the
abstraction case compared to bit-level simulation does not exceed 4% whilst
offering a simulation time saving reduction of around 62,000 times.Comment: 5 pages, 8 figures, accepted in VTC- spring 201
ARQ-Aware Scheduling and Link Adaptation for Video Transmission over Mobile Broadband Networks
This paper studies the effect of ARQ retransmissions on packet error rate, delay, and jitter at the application layer for a real-time video transmission at 1.03âMbps over a mobile broadband network. The effect of time-correlated channel errors for various Mobile Station (MS) velocities is evaluated. In the context of mobile WiMAX, the role of the ARQ Retry Timeout parameter and the maximum number of ARQ retransmissions is taken into account. ARQ-aware and channel-aware scheduling is assumed in order to allocate adequate resources according to the level of packet error rate and the number of ARQ retransmissions required. A novel metric, namely, goodput per frame, is proposed as a measure of transmission efficiency. Results show that to attain quasi error free transmission and low jitter (for real-time video QoS), only QPSK 1/2 can be used at mean channel SNR values between 12âdB and 16âdB, while 16QAM 1/2 can be used below 20âdB at walking speeds. However, these modes are shown to result in low transmission efficiency, attaining, for example, a total goodput of 3âMbps at an SNR of 14âdB, for a block lifetime of 90âms. It is shown that ARQ retransmissions are more effective at higher MS speeds
- âŠ