95 research outputs found

    Feasibility Study of OFDM-MFSK Modulation Scheme for Smart Metering Technology

    Get PDF
    The Orthogonal Frequency Division Multiplexing based M-ary Frequency Shift Keying (OFDM-MFSK) is a noncoherent modulation scheme which merges MFSK with the OFDM waveform. It is designed to improve the receiver sensitivity in the hard environments where channel estimation is very difficult to perform. In this paper, the OFDM-MFSK is suggested for the smart metering technology and its performance is measured and compared with the ordinary OFDM-BPSK. Our results show that, depending on the MFSK size value (M), the Packet Error Rate (PER) has dramatically improved for OFDM-MFSK. Additionally, the adaptive OFDM-MFSK, which selects the best M value that gives the minimum PER and higher throughput for each Smart Meter (SM), has better coverage than OFDM-BPSK. Although its throughput and capacity are lower than OFDMBPSK, the connected SMs per sector are higher. Based on the smart metering technology requirements which imply the need for high coverage and low amount of data exchanged between the network and the SMs, The OFDM-MFSK can be efficiently used in this technology.Comment: 6 pages, 11 figures, ISGT Europe 201

    A Link Quality Model for Generalised Frequency Division Multiplexing

    Get PDF
    5G systems aim to achieve extremely high data rates, low end-to-end latency and ultra-low power consumption. Recently, there has been considerable interest in the design of 5G physical layer waveforms. One important candidate is Generalised Frequency Division Multiplexing (GFDM). In order to evaluate its performance and features, system-level studies should be undertaken in a range of scenarios. These studies, however, require highly complex computations if they are performed using bit-level simulators. In this paper, the Mutual Information (MI) based link quality model (PHY abstraction), which has been regularly used to implement system-level studies for Orthogonal Frequency Division Multiplexing (OFDM), is applied to GFDM. The performance of the GFDM waveform using this model and the bit-level simulation performance is measured using different channel types. Moreover, a system-level study for a GFDM based LTE-A system in a realistic scenario, using both a bit-level simulator and this abstraction model, has been studied and compared. The results reveal the accuracy of this model using realistic channel data. Based on these results, the PHY abstraction technique can be applied to evaluate the performance of GFDM based systems in an effective manner with low complexity. The maximum difference in the Packet Error Rate (PER) and throughput results in the abstraction case compared to bit-level simulation does not exceed 4% whilst offering a simulation time saving reduction of around 62,000 times.Comment: 5 pages, 8 figures, accepted in VTC- spring 201

    Frame delay and loss analysis for video transmission over time-correlated 802.11A/G channels

    Get PDF

    LTE-Advanced Downlink Throughput Evaluation In The 3G And TV White Space Bands

    Get PDF

    Impact of 3D Propagation on Wi-Fi Performance in MIMO System

    Get PDF

    A Novel Opportunistic NOMA in Downlink Coordinated Multi-Point Networks

    Get PDF

    ARQ-Aware Scheduling and Link Adaptation for Video Transmission over Mobile Broadband Networks

    Get PDF
    This paper studies the effect of ARQ retransmissions on packet error rate, delay, and jitter at the application layer for a real-time video transmission at 1.03 Mbps over a mobile broadband network. The effect of time-correlated channel errors for various Mobile Station (MS) velocities is evaluated. In the context of mobile WiMAX, the role of the ARQ Retry Timeout parameter and the maximum number of ARQ retransmissions is taken into account. ARQ-aware and channel-aware scheduling is assumed in order to allocate adequate resources according to the level of packet error rate and the number of ARQ retransmissions required. A novel metric, namely, goodput per frame, is proposed as a measure of transmission efficiency. Results show that to attain quasi error free transmission and low jitter (for real-time video QoS), only QPSK 1/2 can be used at mean channel SNR values between 12 dB and 16 dB, while 16QAM 1/2 can be used below 20 dB at walking speeds. However, these modes are shown to result in low transmission efficiency, attaining, for example, a total goodput of 3 Mbps at an SNR of 14 dB, for a block lifetime of 90 ms. It is shown that ARQ retransmissions are more effective at higher MS speeds
    • 

    corecore