7 research outputs found

    Cross-layer Optimization in the Next-generation Broadband Satellite Systems

    Get PDF
    Abstract Next-generation broadband satellite systems will have the capability to provide costeffective universal broadband access for the users. In order to meet users' requirements on high quality multimedia services, many enhancements have to be made on the existing satellite technologies. One of the promising methods is the introduction of cross-layer design. There are several advantages of a layered approach since modularity, robustness and ease of designs are achieved without difficulty. However the properties of the different layers have substantial interdependencies and a modularised design may therefore be suboptimal with regards to performance and availability in a hybrid satellite and mobile wireless environment. In this paper, we will carry out a review of the cross-layer design in satellite systems. Based on this, a cross-layer architecture for the next-generation broadband satellite system is proposed. The proposed cross-layer architecture has two main components: QoS and resource management and mobility management. In each component, the cross-layer techniques that have been used are described in details

    Cross-layer optimization in the next-generation broadband satellite systems

    Get PDF
    Next-generation broadband satellite systems will have the capability to provide costeffective universal broadband access for the users. In order to meet users' requirements on high quality multimedia services, many enhancements have to be made on the existing satellite technologies. One of the promising methods is the introduction of cross-layer design. There are several advantages of a layered approach since modularity, robustness and ease of designs are achieved without difficulty. However the properties of the different layers have substantial interdependencies and a modularised design may therefore be suboptimal with regards to performance and availability in a hybrid satellite and mobile wireless environment. In this paper, we will carry out a review of the cross-layer design in satellite systems. Based on this, a cross-layer architecture for the next-generation broadband satellite system is proposed. The proposed cross-layer architecture has two main components: QoS and resource management and mobility management. In each component, the cross-layer techniques that have been used are described in details

    Cross-layer Optimization in the Next-generation Broadband Satellite Systems

    Get PDF
    Next-generation broadband satellite systems will have the capability to provide cost-effective universal broadband access for the users. In order to meet users’ requirements on high quality multimedia services, many enhancements have to be made on the existing satellite technologies. One of the promising methods is the introduction of cross-layer design. There are several advantages of a layered approach since modularity, robustness and ease of designs are achieved without difficulty. However the properties of the different layers have substantial interdependencies and a modularised design may therefore be suboptimal with regards to performance and availability in a hybrid satellite and mobile wireless environment. In this paper, we will carry out a review of the cross-layer design in satellite systems. Based on this, a cross-layer architecture for the next-generation broadband satellite system is proposed. The proposed cross-layer architecture has two main components: QoS and resource management and mobility management. In each component, the cross-layer techniques that have been used are described in details
    corecore