1,747 research outputs found

    Recurrent proofs of the irrationality of certain trigonometric values

    Full text link
    We use recurrences of integrals to give new and elementary proofs of the irrationality of pi, tan(r) for all nonzero rational r, and cos(r) for all nonzero rational r^2. Immediate consequences to other values of the elementary transcendental functions are also discussed

    Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Get PDF
    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost

    Global periodicity conditions for maps and recurrences via Normal Forms

    Get PDF
    We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences.Comment: 25 page

    Sums of products of Ramanujan sums

    Full text link
    The Ramanujan sum cn(k)c_n(k) is defined as the sum of kk-th powers of the primitive nn-th roots of unity. We investigate arithmetic functions of rr variables defined as certain sums of the products cm1(g1(k))...cmr(gr(k))c_{m_1}(g_1(k))...c_{m_r}(g_r(k)), where g1,...,grg_1,..., g_r are polynomials with integer coefficients. A modified orthogonality relation of the Ramanujan sums is also derived.Comment: 13 pages, revise

    Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines

    Get PDF
    Accurate simulations of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid dynamics methods. The aerodynamic interaction between the blades of the rotor and the wake that is produced by the blades requires a high-fidelity representation of the convection of vorticity within the wake. In addition, the cyclic motion of the blades induces large variations in the angle of attack on the blades that can manifest as dynamic stall. The present paper describes the application of a numerical model that is based on the vorticity transport formulation of the Navier–Stokes equations, to the prediction of the aerodynamics of a verticalaxis wind turbine that consists of three curved rotor blades that are twisted helically around the rotational axis of the rotor. The predicted variation of the power coefficient with tip speed ratio compares very favorably with experimental measurements. It is demonstrated that helical blade twist reduces the oscillation of the power coefficient that is an inherent feature of turbines with non-twisted blade configurations

    Ground states for a class of deterministic spin models with glassy behaviour

    Full text link
    We consider the deterministic model with glassy behaviour, recently introduced by Marinari, Parisi and Ritort, with \ha\ H=i,j=1NJi,jσiσjH=\sum_{i,j=1}^N J_{i,j}\sigma_i\sigma_j, where JJ is the discrete sine Fourier transform. The ground state found by these authors for NN odd and 2N+12N+1 prime is shown to become asymptotically dege\-ne\-ra\-te when 2N+12N+1 is a product of odd primes, and to disappear for NN even. This last result is based on the explicit construction of a set of eigenvectors for JJ, obtained through its formal identity with the imaginary part of the propagator of the quantized unit symplectic matrix over the 22-torus.Comment: 15 pages, plain LaTe

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Absence of singular superconducting fluctuation corrections to thermal conductivity

    Full text link
    We evaluate the superconducting fluctuation corrections to thermal conductivity in the normal state which diverge as T approaches T_c. We find zero total contribution for one, two and three-dimensional superconductors for arbitrary impurity concentration. The method used is diagrammatic many-body theory, and all contributions -- Aslamazov-Larkin (AL), Maki-Thompson (MT), and density-of-states (DOS) -- are considered. The AL contribution is convergent, whilst the divergences of the DOS and MT diagrams exactly cancel.Comment: 4 pages text; 2 figure

    Comparison of Langevin and Markov channel noise models for neuronal signal generation

    Full text link
    The stochastic opening and closing of voltage-gated ion channels produces noise in neurons. The effect of this noise on the neuronal performance has been modelled using either approximate or Langevin model, based on stochastic differential equations or an exact model, based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+Na^{+} and K+K^{+}, or only K+K^{+} voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and non-spiking membranes. Even with increasing numbers of channels the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels

    Quenching across quantum critical points in periodic systems: dependence of scaling laws on periodicity

    Full text link
    We study the quenching dynamics of a many-body system in one dimension described by a Hamiltonian that has spatial periodicity. Specifically, we consider a spin-1/2 chain with equal xx and yy couplings and subject to a periodically varying magnetic field in the z direction or, equivalently, a tight-binding model of spinless fermions with a periodic local chemical potential, having period 2q, where q is a natural number. For a linear quench of the magnetic field strength (or potential strength) at rate 1/\tau across a quantum critical point, we find that the density of defects thereby produced scales as 1/\tau^{q/(q+1)}, deviating from the 1/\sqrt{\tau} scaling that is ubiquitous to a range of systems. We analyze this behavior by mapping the low-energy physics of the system to a set of fermionic two-level systems labeled by the lattice momentum k undergoing a non-linear quench as well as by performing numerical simulations. We also find that if the magnetic field is a superposition of different periods, the power law depends only on the smallest period for very large values of \tau although it may exhibit a cross-over at intermediate values of \tau. Finally, for the case where a zz coupling is also present in the spin chain, or equivalently, where interactions are present in the fermionic system, we argue that the power associated with the scaling law depends on a combination of q and interaction strength.Comment: 13 pages including 11 figure
    corecore