3 research outputs found

    The ultrafine powder of atractylodis macrocephalae rhizoma improves immune function in naturally aging rats by regulating the PI3K/Akt/NF-κB signaling pathway

    Get PDF
    BackgroundThe phenomenon of population aging presents a significant global challenge, with the aging population in China steadily increasing. As individuals progress in age, there is a gradual deterioration of human organs and systems, as well as a decline in the immune system, referred to as immunosenescence. Atractylodis macrocephalae rhizoma (BZ) has been historically used in China for its medicinal properties, including gastrointestinal improvement, immunomodulation, anti-aging, antioxidant effects, and anti-tumor effects. Nevertheless, there remains a gap in understanding the pharmacological and molecular mechanisms underlying its anti-immunosenescence effects.MethodsThis study employed UPLC-ESI-MS and network pharmacology to create a network map of BZ ultrafine powder (BZU) and its aging targets. Enrichment analysis was then used to identify the primary mechanistic pathways underlying BZU’s anti-immunosenescence effects. The primary components of BZU were quantitatively analyzed using high-performance liquid chromatography (HPLC). Naturally aging rats were used to examine the effects of different oral doses (0.25, 0.5, and 1 g/kg) of BZU over 5 weeks on aging performance, peripheral blood immunophenotyping and cell count, and splenic lymphocyte proliferation rate. To validate the findings of network pharmacology, quantitative RT-PCR, Western blotting, and immunofluorescence analyses were conducted.ResultsOur analyses demonstrated that BZU improved various indicators of aging in naturally aging rats, such as increasing the number of voluntary activities, enhance grip strength and fatigue resistance, increasing the microcirculatory blood flow and improving hematological levels. The BZU administration enhanced T and B lymphocyte proliferation and significantly improved the lymphocyte-to-T cell subpopulation ratio. It can elevate serum IL-2 and IL-4 levels while reducing IL-6, IFN-γ and TNF-α levels in naturally aging rats. Finally, it increased CD3 protein expression in the spleen while decreasing protein levels of PI3K, p-AKT, IKKα/β, and NF-κB. It also decreased the mRNA expression of Pik3cg, Akt1, Pdk1 and Nfκb1.ConclusionThese findings suggest that BZU may enhance lymphocyte proliferation by inhibiting the PI3K/Akt/NF-κB signaling pathway, correcting immune cell imbalances, reducing inflammatory responses, and ultimately enhancing immune function and potentially delaying aging

    Design and Simulation Analysis of Docking Interface of Linked In-Orbit Replacement Module

    No full text
    On-orbit service for spacecraft relies heavily on on-orbit docking with the orbital replacement unit docking interface. Foreign research on the docking interface of the orbit replaceable unit has been in-depth, while the domestic work is still limited. Currently, most design on the docking interface relies on the axial feed of the manipulator, which may result in insufficient docking interface mating force under specific conditions. In view of the above problems, it requires a linear plug-in locking interface for the docking of the orbital replaceable unit, and the design scheme of the tapered rod guide and linkage locking parts needs to be determined. Optimization of the linkage locking mechanism is completed by a finite element simulation. The effect of clearance of the taper rod, effective locking points and friction coefficient have been analyzed by means of dynamics modelling during the docking and locking processes. The research also verified the design rationality for the orbital replaceable unit linkage. A processing path and verification for the prototype have been made as well. This work introduces the idea of self-plugging during the orbital docking process. It lays a foundation for the prototype development and control strategy of the orbital replaceable unit
    corecore