14,958 research outputs found
Test of quantum chemistry in vibrationally-hot hydrogen molecules
Precision measurements are performed on highly excited vibrational quantum
states of molecular hydrogen. The rovibrational levels of H
(), lying only cm below the first dissociation
limit, were populated by photodissociation of HS and their level energies
were accurately determined by two-photon Doppler-free spectroscopy. A
comparison between the experimental results on level energies with the
best \textit{ab initio} calculations shows good agreement, where the present
experimental accuracy of cm is more precise than
theory, hence providing a gateway to further test theoretical advances in this
benchmark quantum system.Comment: 5 pages, 4 figures, and 2 table
High-precision laser spectroscopy of the CO A - X (2,0), (3,0) and (4,0) bands
High-precision two-photon Doppler-free frequency measurements have been
performed on the CO A - X fourth-positive system (2,0),
(3,0), and (4,0) bands. Absolute frequencies of forty-three transitions, for
rotational quantum numbers up to , have been determined at an accuracy
of cm, using advanced techniques of two-color 2+1'
resonance-enhanced multi-photon ionization, Sagnac interferometry,
frequency-chirp analysis on the laser pulses, and correction for AC-Stark
shifts. The accurate transition frequencies of the CO A - X
system are of relevance for comparison with astronomical data in the search for
possible drifts of fundamental constants in the early universe. The present
accuracies in laboratory wavelengths of may be considered exact for the purpose of such comparisons.Comment: 13 pages, 6 figures, The Journal of Chemical Physics (2015) accepte
Separable states and the geometric phases of an interacting two-spin system
It is known that an interacting bipartite system evolves as an entangled
state in general, even if it is initially in a separable state. Due to the
entanglement of the state, the geometric phase of the system is not equal to
the sum of the geometric phases of its two subsystems. However, there may exist
a set of states in which the nonlocal interaction does not affect the
separability of the states, and the geometric phase of the bipartite system is
then always equal to the sum of the geometric phases of its subsystems. In this
paper, we illustrate this point by investigating a well known physical model.
We give a necessary and sufficient condition in which a separable state remains
separable so that the geometric phase of the system is always equal to the sum
of the geometric phases of its subsystems.Comment: 13 page
The CO A-X System for Constraining Cosmological Drift of the Proton-Electron Mass Ratio
The band system of carbon monoxide,
which has been detected in six highly redshifted galaxies (), is
identified as a novel probe method to search for possible variations of the
proton-electron mass ratio () on cosmological time scales. Laboratory
wavelengths of the spectral lines of the A-X (,0) bands for have
been determined at an accuracy of
through VUV Fourier-transform absorption spectroscopy, providing a
comprehensive and accurate zero-redshift data set. For the (0,0) and (1,0)
bands, two-photon Doppler-free laser spectroscopy has been applied at the accuracy level, verifying the absorption data. Sensitivity
coefficients for a varying have been calculated for the CO A-X
bands, so that an operational method results to search for -variation.Comment: 7 pages (main article), 3 figures, includes supplementary materia
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
Compression of Atomic Phase Space Using an Asymmetric One-Way Barrier
We show how to construct asymmetric optical barriers for atoms. These
barriers can be used to compress phase space of a sample by creating a confined
region in space where atoms can accumulate with heating at the single photon
recoil level. We illustrate our method with a simple two-level model and then
show how it can be applied to more realistic multi-level atoms
Electron Depletion Due to Bias of a T-Shaped Field-Effect Transistor
A T-shaped field-effect transistor, made out of a pair of two-dimensional
electron gases, is modeled and studied. A simple numerical model is developed
to study the electron distribution vs. applied gate voltage for different gate
lengths. The model is then improved to account for depletion and the width of
the two-dimensional electron gases. The results are then compared to the
experimental ones and to some approximate analytical calculations and are found
to be in good agreement with them.Comment: 16 pages, LaTex (RevTex), 8 fig
Statistical Mechanics of an Optical Phase Space Compressor
We describe the statistical mechanics of a new method to produce very cold
atoms or molecules. The method results from trapping a gas in a potential well,
and sweeping through the well a semi-permeable barrier, one that allows
particles to leave but not to return. If the sweep is sufficiently slow, all
the particles trapped in the well compress into an arbitrarily cold gas. We
derive analytical expressions for the velocity distribution of particles in the
cold gas, and compare these results with numerical simulations.Comment: 7 pages, 3 figure
- …