90 research outputs found

    Improving Top- N

    Get PDF
    Recommender systems become increasingly significant in solving the information explosion problem. Data sparse is a main challenge in this area. Massive unrated items constitute missing data with only a few observed ratings. Most studies consider missing data as unknown information and only use observed data to learn models and generate recommendations. However, data are missing not at random. Part of missing data is due to the fact that users choose not to rate them. This part of missing data is negative examples of user preferences. Utilizing this information is expected to leverage the performance of recommendation algorithms. Unfortunately, negative examples are mixed with unlabeled positive examples in missing data, and they are hard to be distinguished. In this paper, we propose three schemes to utilize the negative examples in missing data. The schemes are then adapted with SVD++, which is a state-of-the-art matrix factorization recommendation approach, to generate recommendations. Experimental results on two real datasets show that our proposed approaches gain better top-N performance than the baseline ones on both accuracy and diversity

    Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis

    Get PDF
    Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention modulation and memory processing of primate visual cortex. In this paper, we employ the above properties of primate visual cortex to improve CNN and propose a biological-mechanism-driven-feature-construction based answer recommendation method (BMFC-ARM), which is used to recommend the best answer for the corresponding given questions in community question answering. BMFC-ARM is an improved CNN with four channels respectively representing questions, answers, asker information and answerer information, and mainly contains two stages: biological mechanism driven feature construction (BMFC) and answer ranking. BMFC imitates the attention modulation property by introducing the asker information and answerer information of given questions and the similarity between them, and imitates the memory processing property through bringing in the user reputation information for answerers. Then the feature vector for answer ranking is constructed by fusing the asker-answerer similarities, answerer's reputation and the corresponding vectors of question, answer, asker and answerer. Finally, the Softmax is used at the stage of answer ranking to get best answers by the feature vector. The experimental results of answer recommendation on the Stackexchange dataset show that BMFC-ARM exhibits better performance

    Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting

    Full text link
    Due to the nonstationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distribution drift and degrade the forecasting performance over time. Existing methods address distribution drift via adapting to the latest arrived data or self-correcting per the meta knowledge derived from future data. Despite their great success in MTS forecasting, these methods hardly capture the intrinsic distribution changes, especially from a distributional perspective. Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time between historical observations and future data in MTSs and infer the dependencies as a temporal conditional distribution to leverage latent variables. Specifically, a novel temporal Hawkes attention mechanism represents temporal factors subsequently fed into feed-forward networks to estimate the prior Gaussian distribution of latent variables. The representation of temporal factors further dynamically adjusts the structures of Transformer-based encoder and decoder to distribution changes by leveraging a gated attention mechanism. Moreover, we introduce conditional continuous normalization flow to transform the prior Gaussian to a complex and form-free distribution to facilitate flexible inference of the temporal conditional distribution. Extensive experiments conducted on six real-world MTS datasets demonstrate the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines. We further illustrate the TCVAE applicability through multifaceted case studies and visualization in real-world scenarios.Comment: 13 pages, 6 figures, submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS

    Learning Informative Representation for Fairness-aware Multivariate Time-series Forecasting: A Group-based Perspective

    Full text link
    Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models since such models may attend/bias to certain (advantaged) variables. Addressing this unfairness problem is important for equally attending to all variables and avoiding vulnerable model biases/risks. However, fair MTS forecasting is challenging and has been less studied in the literature. To bridge such significant gap, we formulate the fairness modeling problem as learning informative representations attending to both advantaged and disadvantaged variables. Accordingly, we propose a novel framework, named FairFor, for fairness-aware MTS forecasting. FairFor is based on adversarial learning to generate both group-independent and group-relevant representations for the downstream forecasting. The framework first leverages a spectral relaxation of the K-means objective to infer variable correlations and thus to group variables. Then, it utilizes a filtering&fusion component to filter the group-relevant information and generate group-independent representations via orthogonality regularization. The group-independent and group-relevant representations form highly informative representations, facilitating to sharing knowledge from advantaged variables to disadvantaged variables to guarantee fairness. Extensive experiments on four public datasets demonstrate the effectiveness of our proposed FairFor for fair forecasting and significant performance improvement.Comment: 13 pages, 5 figures, accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE

    Edge-Varying Fourier Graph Networks for Multivariate Time Series Forecasting

    Full text link
    The key problem in multivariate time series (MTS) analysis and forecasting aims to disclose the underlying couplings between variables that drive the co-movements. Considerable recent successful MTS methods are built with graph neural networks (GNNs) due to their essential capacity for relational modeling. However, previous work often used a static graph structure of time-series variables for modeling MTS failing to capture their ever-changing correlations over time. To this end, a fully-connected supra-graph connecting any two variables at any two timestamps is adaptively learned to capture the high-resolution variable dependencies via an efficient graph convolutional network. Specifically, we construct the Edge-Varying Fourier Graph Networks (EV-FGN) equipped with Fourier Graph Shift Operator (FGSO) which efficiently performs graph convolution in the frequency domain. As a result, a high-efficiency scale-free parameter learning scheme is derived for MTS analysis and forecasting according to the convolution theorem. Extensive experiments show that EV-FGN outperforms state-of-the-art methods on seven real-world MTS datasets

    Deep Coupling Network For Multivariate Time Series Forecasting

    Full text link
    Multivariate time series (MTS) forecasting is crucial in many real-world applications. To achieve accurate MTS forecasting, it is essential to simultaneously consider both intra- and inter-series relationships among time series data. However, previous work has typically modeled intra- and inter-series relationships separately and has disregarded multi-order interactions present within and between time series data, which can seriously degrade forecasting accuracy. In this paper, we reexamine intra- and inter-series relationships from the perspective of mutual information and accordingly construct a comprehensive relationship learning mechanism tailored to simultaneously capture the intricate multi-order intra- and inter-series couplings. Based on the mechanism, we propose a novel deep coupling network for MTS forecasting, named DeepCN, which consists of a coupling mechanism dedicated to explicitly exploring the multi-order intra- and inter-series relationships among time series data concurrently, a coupled variable representation module aimed at encoding diverse variable patterns, and an inference module facilitating predictions through one forward step. Extensive experiments conducted on seven real-world datasets demonstrate that our proposed DeepCN achieves superior performance compared with the state-of-the-art baselines

    FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective

    Full text link
    Multivariate time series (MTS) forecasting has shown great importance in numerous industries. Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively. However, the uncertain compatibility of the two networks puts an extra burden on handcrafted model designs. Moreover, the separate spatial and temporal modeling naturally violates the unified spatiotemporal inter-dependencies in real world, which largely hinders the forecasting performance. To overcome these problems, we explore an interesting direction of directly applying graph networks and rethink MTS forecasting from a pure graph perspective. We first define a novel data structure, hypervariate graph, which regards each series value (regardless of variates or timestamps) as a graph node, and represents sliding windows as space-time fully-connected graphs. This perspective considers spatiotemporal dynamics unitedly and reformulates classic MTS forecasting into the predictions on hypervariate graphs. Then, we propose a novel architecture Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space. FourierGNN accommodates adequate expressiveness and achieves much lower complexity, which can effectively and efficiently accomplish the forecasting. Besides, our theoretical analysis reveals FGO's equivalence to graph convolutions in the time domain, which further verifies the validity of FourierGNN. Extensive experiments on seven datasets have demonstrated our superior performance with higher efficiency and fewer parameters compared with state-of-the-art methods.Comment: arXiv admin note: substantial text overlap with arXiv:2210.0309

    A Survey on Deep Learning based Time Series Analysis with Frequency Transformation

    Full text link
    Recently, frequency transformation (FT) has been increasingly incorporated into deep learning models to significantly enhance state-of-the-art accuracy and efficiency in time series analysis. The advantages of FT, such as high efficiency and a global view, have been rapidly explored and exploited in various time series tasks and applications, demonstrating the promising potential of FT as a new deep learning paradigm for time series analysis. Despite the growing attention and the proliferation of research in this emerging field, there is currently a lack of a systematic review and in-depth analysis of deep learning-based time series models with FT. It is also unclear why FT can enhance time series analysis and what its limitations in the field are. To address these gaps, we present a comprehensive review that systematically investigates and summarizes the recent research advancements in deep learning-based time series analysis with FT. Specifically, we explore the primary approaches used in current models that incorporate FT, the types of neural networks that leverage FT, and the representative FT-equipped models in deep time series analysis. We propose a novel taxonomy to categorize the existing methods in this field, providing a structured overview of the diverse approaches employed in incorporating FT into deep learning models for time series analysis. Finally, we highlight the advantages and limitations of FT for time series modeling and identify potential future research directions that can further contribute to the community of time series analysis

    Frequency-domain MLPs are More Effective Learners in Time Series Forecasting

    Full text link
    Time series forecasting has played the key role in different industrial, including finance, traffic, energy, and healthcare domains. While existing literatures have designed many sophisticated architectures based on RNNs, GNNs, or Transformers, another kind of approaches based on multi-layer perceptrons (MLPs) are proposed with simple structure, low complexity, and {superior performance}. However, most MLP-based forecasting methods suffer from the point-wise mappings and information bottleneck, which largely hinders the forecasting performance. To overcome this problem, we explore a novel direction of applying MLPs in the frequency domain for time series forecasting. We investigate the learned patterns of frequency-domain MLPs and discover their two inherent characteristic benefiting forecasting, (i) global view: frequency spectrum makes MLPs own a complete view for signals and learn global dependencies more easily, and (ii) energy compaction: frequency-domain MLPs concentrate on smaller key part of frequency components with compact signal energy. Then, we propose FreTS, a simple yet effective architecture built upon Frequency-domain MLPs for Time Series forecasting. FreTS mainly involves two stages, (i) Domain Conversion, that transforms time-domain signals into complex numbers of frequency domain; (ii) Frequency Learning, that performs our redesigned MLPs for the learning of real and imaginary part of frequency components. The above stages operated on both inter-series and intra-series scales further contribute to channel-wise and time-wise dependency learning. Extensive experiments on 13 real-world benchmarks (including 7 benchmarks for short-term forecasting and 6 benchmarks for long-term forecasting) demonstrate our consistent superiority over state-of-the-art methods

    Comprehensive succinylome analyses reveal that hyperthermia upregulates lysine succinylation of annexin A2 by downregulating sirtuin7 in human keratinocytes

    Get PDF
    Background and Objectives: Local hyperthermia at 44°C can clear multiple human papillomavirus (HPV)-infected skin lesions (warts) by targeting a single lesion, which is considered as a success of inducing antiviral immunity in the human body. However, approximately 30% of the patients had a lower response to this intervention. To identify novel molecular targets for anti-HPV immunity induction to improve local hyperthermia efficacy, we conducted a lysine succinylome assay in HaCaT cells (subjected to 44°C and 37°C water baths for 30 min). Methods: The succinylome analysis was conducted on HaCaT subjected to 44°C and 37°C water bath for 30 min using antibody affinity enrichment together with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were validated by western blot (WB), immunoprecipitation (IP), and co-immunoprecipitation (Co-IP). Then, bioinformatic analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, motif characterization, secondary structure, and protein–protein interaction (PPI) was performed. Results: A total of 119 proteins with 197 succinylated sites were upregulated in 44°C-treated HaCaT cells. GO annotation demonstrated that differential proteins were involved in the immune system process and viral transcription. Succinylation was significantly upregulated in annexin A2. We found that hyperthermia upregulated the succinylated level of global proteins in HaCaT cells by downregulating the desuccinylase sirtuin7 (SIRT7), which can interact with annexin A2. Conclusions: Taken together, these data indicated that succinylation of annexin A2 may serve as a new drug target, which could be intervened in combination with local hyperthermia for better treatment of cutaneous warts
    corecore