4 research outputs found

    Boosting Adversarial Transferability across Model Genus by Deformation-Constrained Warping

    Full text link
    Adversarial examples generated by a surrogate model typically exhibit limited transferability to unknown target systems. To address this problem, many transferability enhancement approaches (e.g., input transformation and model augmentation) have been proposed. However, they show poor performances in attacking systems having different model genera from the surrogate model. In this paper, we propose a novel and generic attacking strategy, called Deformation-Constrained Warping Attack (DeCoWA), that can be effectively applied to cross model genus attack. Specifically, DeCoWA firstly augments input examples via an elastic deformation, namely Deformation-Constrained Warping (DeCoW), to obtain rich local details of the augmented input. To avoid severe distortion of global semantics led by random deformation, DeCoW further constrains the strength and direction of the warping transformation by a novel adaptive control strategy. Extensive experiments demonstrate that the transferable examples crafted by our DeCoWA on CNN surrogates can significantly hinder the performance of Transformers (and vice versa) on various tasks, including image classification, video action recognition, and audio recognition. Code is made available at https://github.com/LinQinLiang/DeCoWA.Comment: AAAI 202

    Research on Neutronics Safety Parameters of the AP1000 Nuclear Reactor under Different Conditions

    No full text
    Changes in temperature during reactor operation may cause changes in physical parameters, leading to core overheating and accidents. It is essential to analyze and assess the safety parameters of the core under different operating conditions. This paper investigates the effects of fuel temperature, moderator density, boron concentration, and control rod state on AP1000 safety parameters. The study uses RMC and NJOY to calculate the changes in reactivity factor, effective delayed neutron fraction, and neutron generation time of the AP1000 reactor under different operating conditions. The changes in reactivity coefficients, neutron fluxes, and relative power densities of AP1000 reactors are analyzed for normal and accidental operating conditions. The results indicated that the reactivity coefficient remained negative under accident conditions, which ensured the safe operation of the reactor. The delayed neutron fraction, neutron flux, and power density distributions are affected by fuel temperature, moderator density, and control rod position. The control rod worth was sufficient for the emergency shutdown of the reactor under accidental conditions. It is demonstrated that the operation of the AP1000 reactor under study conditions is safe and controllable

    Symmetric Heat Transfer Pattern of Fuel Assembly Subchannels in a Sodium-Cooled Fast Reactor

    No full text
    The method outlined in this paper is convenient and effective for studying the thermal performance of fuel assemblies cooled with sodium fast reactors using the subchannel procedure. To initially study an optimization model for a symmetric single fuel assembly heat transfer pattern analysis in a fast sodium-cooled reactor based on subchannel calculations, this paper innovatively proposes a subchannel heat transfer analysis method with the entransy dissipation theory, which can solve the limitations and inaccuracies of the traditional entropy method such as poor applicability for heat transfer processes without functional conversion and the paradox of entropy production of heat exchangers. The symmetric distributions of the thermal-hydraulic parameters such as coolant flow rate, coolant temperature, cladding temperature, and fuel pellet temperature were calculated, and the entransy dissipation calculation method corresponding to the fuel assembly subchannels was derived based on the entransy theory. The effect of subchannel differences on the thermal-hydraulic parameters and the symmetric distribution pattern of entransy dissipation during the cooling process of the fuel assembly was analyzed and compared from the symmetrical arrangement of subchannels in the axial and radial directions

    Symmetric Heat Transfer Pattern of Fuel Assembly Subchannels in a Sodium-Cooled Fast Reactor

    No full text
    The method outlined in this paper is convenient and effective for studying the thermal performance of fuel assemblies cooled with sodium fast reactors using the subchannel procedure. To initially study an optimization model for a symmetric single fuel assembly heat transfer pattern analysis in a fast sodium-cooled reactor based on subchannel calculations, this paper innovatively proposes a subchannel heat transfer analysis method with the entransy dissipation theory, which can solve the limitations and inaccuracies of the traditional entropy method such as poor applicability for heat transfer processes without functional conversion and the paradox of entropy production of heat exchangers. The symmetric distributions of the thermal-hydraulic parameters such as coolant flow rate, coolant temperature, cladding temperature, and fuel pellet temperature were calculated, and the entransy dissipation calculation method corresponding to the fuel assembly subchannels was derived based on the entransy theory. The effect of subchannel differences on the thermal-hydraulic parameters and the symmetric distribution pattern of entransy dissipation during the cooling process of the fuel assembly was analyzed and compared from the symmetrical arrangement of subchannels in the axial and radial directions
    corecore