1,233 research outputs found

    Supply chain dynamics and forecasting

    Get PDF
    Nowadays, the global supply chain system needs to respond promptly to changes in customer demand and adapt quickly to advancements in technology. Supply chain management becomes an integral approach which links together producers, distributors and customers in collaborative management of the whole system. The variability in orders or inventories in supply chain systems is generally thought to be caused by exogenous random factors such as uncertainties in customer demand or lead time. Studies have shown, however, that orders or inventories may exhibit significant variability, even if customer demand and lead time are deterministic. Most researchers have concentrated on the effects of the ordering policy on supply chain behaviour, while not many have paid attention to the influences of applying different forecasting to supply chain planning. This thesis presents an analysis of the behaviour of a model of a centralised supply chain. The research was conducted within the manufacturing sector and involved the breathing equipment manufacturer Draeger Safety, UK. The modelling process was embedded in the organization and was focused on the client's needs. A simplified model of the Draeger Safety, UK centralised supply chain was developed and validated. The dynamics of the supply chain under the influence of various factors: demand pattern, ordering policy, demand-information sharing, and lead time were observed. Simulation and analysis were performed using system dynamics, non-linear dynamics and control theory. The findings suggest that destructive oscillations of inventory could be generated by internal decision making practices. To reduce the variation in the supply chain system, the adjustment parameters for both inventory and supply line discrepancies should be more comparable in magnitude. Counter- intuitively, in certain fields of decision, sharing demand information can do more harm than good. The linear forecasting ARMA (autoregression and moving average) model and the nonlinear forecasting model Wavelet Neural Network were applied as the supply chain forecasting methods. The performance was tested against supply chain costs. A management microworld was developed, allowing managers to experiment with different decision policies and learn how the supply chain performs

    Fast inference in nonlinear dynamical systems using gradient matching

    Get PDF
    Parameter inference in mechanistic models of coupled differential equations is a topical problem. We propose a new method based on kernel ridge regression and gradient matching, and an objective function that simultaneously encourages goodness of fit and penalises inconsistencies with the differential equations. Fast minimisation is achieved by exploiting partial convexity inherent in this function, and setting up an iterative algorithm in the vein of the EM algorithm. An evaluation of the proposed method on various benchmark data suggests that it compares favourably with state-of-the-art alternatives

    Inference in Nonlinear Differential Equations

    Get PDF
    Parameter inference in mechanistic models of coupled differential equations is a challenging problem. We propose a new method using kernel ridge regression in Reproducing Kernel Hilbert Spaces (RKHS). A three-step gradient matching algorithm is developed and applied to a realistic biochemical model

    Parameter Inference in Differential Equation Models of Biopathways using Time Warped Gradient Matching

    Get PDF
    Parameter inference in mechanistic models of biopathways based on systems of coupled differential equations is a topical yet computationally challenging problem, due to the fact that each parameter adaptation involves a numerical integration of the differential equations. Techniques based on gradient matching, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives predicted from the differential equations, offer a computationally appealing shortcut to the inference problem. However, gradient matching critically hinges on the smoothing scheme for function interpolation, with spurious wiggles in the interpolant having a dramatic effect on the subsequent inference. The present article demonstrates that a time warping approach aiming to homogenize intrinsic functional length scales can lead to a signifi- cant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from a dynamical system with periodic limit cycle and a biopathway

    Approximate parameter inference in systems biology using gradient matching: a comparative evaluation

    Get PDF
    Background: A challenging problem in current systems biology is that of parameter inference in biological pathways expressed as coupled ordinary differential equations (ODEs). Conventional methods that repeatedly numerically solve the ODEs have large associated computational costs. Aimed at reducing this cost, new concepts using gradient matching have been proposed, which bypass the need for numerical integration. This paper presents a recently established adaptive gradient matching approach, using Gaussian processes, combined with a parallel tempering scheme, and conducts a comparative evaluation with current state of the art methods used for parameter inference in ODEs. Among these contemporary methods is a technique based on reproducing kernel Hilbert spaces (RKHS). This has previously shown promising results for parameter estimation, but under lax experimental settings. We look at a range of scenarios to test the robustness of this method. We also change the approach of inferring the penalty parameter from AIC to cross validation to improve the stability of the method. Methodology: Methodology for the recently proposed adaptive gradient matching method using Gaussian processes, upon which we build our new method, is provided. Details of a competing method using reproducing kernel Hilbert spaces are also described here. Results: We conduct a comparative analysis for the methods described in this paper, using two benchmark ODE systems. The analyses are repeated under different experimental settings, to observe the sensitivity of the techniques. Conclusions: Our study reveals that for known noise variance, our proposed method based on Gaussian processes and parallel tempering achieves overall the best performance. When the noise variance is unknown, the RKHS method proves to be more robust

    Statistical inference in mechanistic models: time warping for improved gradient matching

    Get PDF
    Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods based on gradient matching have become popular. However, these methods critically depend on the smoothing scheme for function interpolation. The present article adapts an idea from manifold learning and demonstrates that a time warping approach aiming to homogenize intrinsic length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from two dynamical systems with periodic limit cycle, a biopathway, and an application from soft-tissue mechanics. Our study also provides a comparative evaluation on a wide range of signal-to-noise ratios

    Inference in Nonlinear Differential Equations

    Get PDF
    Parameter inference in mechanistic models of coupled differential equations is a challenging problem. We propose a new method using kernel ridge regression in Reproducing Kernel Hilbert Spaces (RKHS). A three-step gradient matching algorithm is developed and applied to a realistic biochemical model
    • …
    corecore