13 research outputs found

    Perfect Omniscience, Perfect Secrecy and Steiner Tree Packing

    Get PDF
    We consider perfect secret key generation for a ``pairwise independent network'' model in which every pair of terminals share a random binary string, with the strings shared by distinct terminal pairs being mutually independent. The terminals are then allowed to communicate interactively over a public noiseless channel of unlimited capacity. All the terminals as well as an eavesdropper observe this communication. The objective is to generate a perfect secret key shared by a given set of terminals at the largest rate possible, and concealed from the eavesdropper. First, we show how the notion of perfect omniscience plays a central role in characterizing perfect secret key capacity. Second, a multigraph representation of the underlying secrecy model leads us to an efficient algorithm for perfect secret key generation based on maximal Steiner tree packing. This algorithm attains capacity when all the terminals seek to share a key, and, in general, attains at least half the capacity. Third, when a single ``helper'' terminal assists the remaining ``user'' terminals in generating a perfect secret key, we give necessary and sufficient conditions for the optimality of the algorithm; also, a ``weak'' helper is shown to be sufficient for optimality.Comment: accepted to the IEEE Transactions on Information Theor

    INFORMATION THEORETIC SECRET KEY GENERATION: STRUCTURED CODES AND TREE PACKING

    Get PDF
    This dissertation deals with a multiterminal source model for secret key generation by multiple network terminals with prior and privileged access to a set of correlated signals complemented by public discussion among themselves. Emphasis is placed on a characterization of secret key capacity, i.e., the largest rate of an achievable secret key, and on algorithms for key construction. Various information theoretic security requirements of increasing stringency: weak, strong and perfect secrecy, as well as different types of sources: finite-valued and continuous, are studied. Specifically, three different models are investigated. First, we consider strong secrecy generation for a discrete multiterminal source model. We discover a connection between secret key capacity and a new source coding concept of ``minimum information rate for signal dissemination,'' that is of independent interest in multiterminal data compression. Our main contribution is to show for this discrete model that structured linear codes suffice to generate a strong secret key of the best rate. Second, strong secrecy generation is considered for models with continuous observations, in particular jointly Gaussian signals. In the absence of suitable analogs of source coding notions for the previous discrete model, new techniques are required for a characterization of secret key capacity as well as for the design of algorithms for secret key generation. Our proof of the secret key capacity result, in particular the converse proof, as well as our capacity-achieving algorithms for secret key construction based on structured codes and quantization for a model with two terminals, constitute the two main contributions for this second model. Last, we turn our attention to perfect secrecy generation for fixed signal observation lengths as well as for their asymptotic limits. In contrast with the analysis of the previous two models that relies on probabilistic techniques, perfect secret key generation bears the essence of ``zero-error information theory,'' and accordingly, we rely on mathematical techniques of a combinatorial nature. The model under consideration is the ``Pairwise Independent Network'' (PIN) model in which every pair of terminals share a random binary string, with the strings shared by distinct pairs of terminals being mutually independent. This model, which is motivated by practical aspects of a wireless communication network in which terminals communicate on the same frequency, results in three main contributions. First, the concept of perfect omniscience in data compression leads to a single-letter formula for the perfect secret key capacity of the PIN model; moreover, this capacity is shown to be achieved by linear noninteractive public communication, and coincides with strong secret key capacity. Second, taking advantage of a multigraph representation of the PIN model, we put forth an efficient algorithm for perfect secret key generation based on a combinatorial concept of maximal packing of Steiner trees of the multigraph. When all the terminals seek to share perfect secrecy, the algorithm is shown to achieve capacity. When only a subset of terminals wish to share perfect secrecy, the algorithm is shown to achieve at least half of it. Additionally, we obtain nonasymptotic and asymptotic bounds on the size and rate of the best perfect secret key generated by the algorithm. These bounds are of independent interest from a purely graph theoretic viewpoint as they constitute new estimates for the maximum size and rate of Steiner tree packing of a given multigraph. Third, a particular configuration of the PIN model arises when a lone ``helper'' terminal aids all the other ``user'' terminals generate perfect secrecy. This model has special features that enable us to obtain necessary and sufficient conditions for Steiner tree packing to achieve perfect secret key capacity

    Universal Sequential Outlier Hypothesis Testing

    Full text link
    Universal outlier hypothesis testing is studied in a sequential setting. Multiple observation sequences are collected, a small subset of which are outliers. A sequence is considered an outlier if the observations in that sequence are generated by an "outlier" distribution, distinct from a common "typical" distribution governing the majority of the sequences. Apart from being distinct, the outlier and typical distributions can be arbitrarily close. The goal is to design a universal test to best discern all the outlier sequences. A universal test with the flavor of the repeated significance test is proposed and its asymptotic performance is characterized under various universal settings. The proposed test is shown to be universally consistent. For the model with identical outliers, the test is shown to be asymptotically optimal universally when the number of outliers is the largest possible and with the typical distribution being known, and its asymptotic performance otherwise is also characterized. An extension of the findings to the model with multiple distinct outliers is also discussed. In all cases, it is shown that the asymptotic performance guarantees for the proposed test when neither the outlier nor typical distribution is known converge to those when the typical distribution is known.Comment: Proc. of the Asilomar Conference on Signals, Systems, and Computers, 2014. To appea

    Controlled Sensing for Multihypothesis Testing

    Full text link
    The problem of multiple hypothesis testing with observation control is considered in both fixed sample size and sequential settings. In the fixed sample size setting, for binary hypothesis testing, the optimal exponent for the maximal error probability corresponds to the maximum Chernoff information over the choice of controls, and a pure stationary open-loop control policy is asymptotically optimal within the larger class of all causal control policies. For multihypothesis testing in the fixed sample size setting, lower and upper bounds on the optimal error exponent are derived. It is also shown through an example with three hypotheses that the optimal causal control policy can be strictly better than the optimal open-loop control policy. In the sequential setting, a test based on earlier work by Chernoff for binary hypothesis testing, is shown to be first-order asymptotically optimal for multihypothesis testing in a strong sense, using the notion of decision making risk in place of the overall probability of error. Another test is also designed to meet hard risk constrains while retaining asymptotic optimality. The role of past information and randomization in designing optimal control policies is discussed.Comment: To appear in the Transactions on Automatic Contro

    Universal Outlier Detection

    No full text
    Abstract—The following outlier detection problem is studied in a universal setting. Vector observations are collected each with M coordinates. When the i-th coordinate is the outlier, the observations in that coordinate are assumed to be distributed according to the “outlier ” distribution, distinct from the common “typical ” distribution governing the observations in all the other coordinates. Nothing is known about the outlier and the typical distributions except that they are distinct and have full supports. The goal is to design a universal detector to best discern the outlier coordinate. A universal detector is proposed and is shown to be universally exponentially consistent, and a singleletter characterization of the exponent for a symmetric error criterion achievable by this detector is derived. An upper bound for the error exponent that applies to any universal detector is also derived. For the special case of M = 3, a tighter upper bound is derived that quantifies the loss in the exponent when the knowledge of the outlier and typical distributions is absent, from when they are known. I

    Controlled Sensing For Multihypothesis Testing

    No full text
    The problem of multiple hypothesis testing with observation control is considered in both fixed sample size and sequential settings. In the fixed sample size setting, for binary hypothesis testing, the optimal exponent for the maximal error probability corresponds to the maximum Chernoff information over the choice of controls, and a pure stationary open-loop control policy is asymptotically optimal within the larger class of all causal control policies. For multihypothesis testing in the fixed sample size setting, lower and upper bounds on the optimal error exponent are derived. It is also shown through an example with three hypotheses that the optimal causal control policy can be strictly better than the optimal open-loop control policy. In the sequential setting, a test based on earlier work by Chernoff for binary hypothesis testing, is shown to be first-order asymptotically optimal for multihypothesis testing in a strong sense, using the notion of decision making risk in place of the overall probability of error. Another test is also designed to meet hard risk constrains while retaining asymptotic optimality. The role of past information and randomization in designing optimal control policies is discussed. © 2013 IEEE
    corecore