11 research outputs found

    Impact of Janani SurakshaYojana (JSY): A study across two Delhi hospitals

    Get PDF
    This paperattemptsto understand the functioning of Janani Suraksha Yojana (JSY) in New Delhi. The study involved a primary survey of the JSY beneficiaries in two major districts of Delhi. The results of the survey suggest that the scheme has not been very successful in facilitating institutional delivery in Delhi.The scheme has failed to benefit the poor and the underprivileged groups and its limited benefits have only reached the better off households. The implementation of the scheme also has been uneven and faulty and many beneficiaries face delays in receiving benefits. However, the transition towards the direct benefit transfer (DBT) method of payment shows promise in improving implementation of the scheme

    Energy-Efficient Strategy for Improving Coverage and Rate Using Hybrid Vehicular Networks

    No full text

    Physicochemical and pharmacological assessment of a traditional biomedicine: Mukta shouktic bhasma

    No full text
    Mukta shouktic bhasma (MSB) is a traditional Ayurvedic medicinal preparation. This biomedicine is synthesized through special calcination of mother of pearl as mentioned in the classical Ayurvedic text. Physicochemical characterization of MSB was carried out using modern techniques such as transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction analysis, Fourier transform infra-red spectroscopy, inductively coupled plasma analysis, energy dispersive X-ray analysis, and thermogravimetric analysis. The study showed that the raw material mukta shouktic (mother of pearl) is an organo-mineral matrix containing calcium carbonate in aragonite form. The aragonite form of calcium carbonatetransforms to a stable calcite form during the process of bhasma formation and forms the main crystalline component of MSB. The heat treatment does result in partial conversion of calcite to calcium oxide, which appears as calcium hydroxide(not more than 2% w/w) in the final product. The organic content of processed material degraded gradually. Physical evaluation revealed that MSB is a fine grayish white powder having a poor flow property with narrow particle size distribution of 1.22 to 22.52 m having a mean particle size of 10.20±0.45 m. A clearly identifiable fraction of MSB particles was below 50 nanometer. The presence of nanosized particles in MSB might impart the therapeutic property of this medicine. Trace element analysis of MSB revealed the presence of metals, like arsenic, lead, chromium, cadmium, mercury, and tin under regulatory acceptable limits at the prescribed dose of MSB. Energy dispersive X-ray analysis revealed calcium as the major element (40.22 wt %) in MSB. Microbial load for the formulation was found to be within limits. Animals were found to be safe up to a maximum dose of 2000 mg/kg body weight in acute toxicity studies. A significant (P<0.05) reduction in hyperpyrexia in rat was produced by MSB

    Power Optimization Model for Energy Sustainability in 6G Wireless Networks

    No full text
    Internet-of-Things (IoT) networks are witnessing a rapid proliferation of connected devices and mobile terminals each day. The wireless information flow between these massive battery-powered devices has a huge energy burden and will lead to an energy crisis in the near future; thus, there is an urgent search for sustainable energy networks. To offer a sustainable energy solution in order to meet the energy demands of these massive IoT networks, this paper presents a dynamic practical model that enables the efficient management of power resources. Two user-scheduling algorithms, namely, minimum distance scheduling (MDS) and maximum channel gain scheduling (MCS), are proposed; when these algorithms were used alongside a power optimization, they led to improved network efficiency. Further, the network’s performance was measured with parametric variations in the number of access points (APs); the deployment of APs and AP configuration is carried out for different precoding schemes. The impact of spatial correlation and the access to perfect channel state information (CSI) on the spectral efficiency of the system was also evaluated. In the end, the study compares the performance of different power-allocation methods and suggests that the power allocated to a particular user node by an AP can be controlled using the proposed algorithms. It is observed that, as compared to the MDS algorithm, the MCS algorithm results in better spectral efficiency for all the users with fractional power allocation. In addition, each AP assigns a maximum power of 141.7 mW to a user with strong channel conditions with the AP, and a minimum power of 3.1882 mW to the user with the worst channel conditions using centralized PMMSE precoding

    Intelligent Network Solution for Improved Efficiency in 6G-Enabled Expanded IoT Network

    No full text
    The fast-moving world relies on intelligent connected networks to support the numerous applications of the expanded Internet-of-Things (IoT). The evolving communication requirements of this connected world require a new sixth generation (6G) radio to enable intelligent interaction with the massive number of connected objects. The energy management of billions of connected devices supporting massive Internet-of-Things (IoT) applications is the main challenge. These IoT devices and connected nodes are energy limited, and hence, energy-aware solutions are needed to enable seamless information flow between these communicating nodes. This paper presents an intelligent network solution for improved energy efficiency in a 6G-enabled expanded IoT network. A cell-free massive multiple input multiple output (mMIMO) technology is utilized for maximum energy efficiency with optimum network resource allocation. A practical power consumption model is proposed for the designed network topology which contains all the power components related to data transmission and circuit power. The proposed scheme aims to achieve maximum energy efficiency by the optimal allocation of pilot reuse factor and access point (AP) density for a given number of antennas at each AP and number of users. It is observed that the maximum energy efficiency of 5.2362 Mbit/Joule is achieved at the AP density of 29 and pilot reuse factor of 4 with PMMSE receive combining. In the end, the role of energy efficiency and area throughput tradeoff on the system performance is also evaluated, which suggests that both the energy efficiency and area throughput can be jointly increased until maximum energy efficiency is reached at a point

    A Modified Marx Generator Circuit with Enhanced Tradeoff between Voltage and Pulse Width for Electroporation Applications

    No full text
    Electroporation is a next generation bioelectronics device. The emerging application of electroporation requires high voltage pulses having a pulse-width in the nanosecond range. The essential use of a capacitor results in an increase in the size of the electroporator circuit. This paper discusses the modification of a conventional Marx generator circuit to achieve the high voltage electroporation pulses with a minimal chip size of the circuit. The reduced capacitors are attributed to a reduction in the number of stages used to achieve the required voltage boost. The paper proposes the improved isolation between two capacitors with the usage of optocouplers. Parametric analysis is presented to define the tuneable range of the electroporator circuit. The output voltage of 49.4 V is achieved using the proposed 5-stage MOSFET circuit with an input voltage of 12 V

    Electrically tunable left-handed textile metamaterial for microwave applications

    No full text
    An electrically tunable, textile-based metamaterial (MTM) is presented in this work. The proposed MTM unit cell consists of a decagonal-shaped split-ring resonator and a slotted ground plane integrated with RF varactor diodes. The characteristics of the proposed MTM were first studied independently using a single unit cell, prior to different array combinations consisting of 1 × 2, 2 × 1, and 2 × 2 unit cells. Experimental validation was conducted for the fabricated 2 × 2 unit cell array format. The proposed tunable MTM array exhibits tunable left-handed characteristics for both simulation and measurement from 2.71 to 5.51 GHz and provides a tunable transmission coefficient of the MTM. Besides the left-handed properties within the frequency of interest (from 1 to 15 GHz), the proposed MTM also exhibits negative permittivity and permeability from 8.54 to 10.82 GHz and from 10.6 to 13.78 GHz, respectively. The proposed tunable MTM could operate in a dynamic mode using a feedback system for different microwave wearable applications
    corecore