242 research outputs found

    Measuring and mitigating AS-level adversaries against Tor

    Full text link
    The popularity of Tor as an anonymity system has made it a popular target for a variety of attacks. We focus on traffic correlation attacks, which are no longer solely in the realm of academic research with recent revelations about the NSA and GCHQ actively working to implement them in practice. Our first contribution is an empirical study that allows us to gain a high fidelity snapshot of the threat of traffic correlation attacks in the wild. We find that up to 40% of all circuits created by Tor are vulnerable to attacks by traffic correlation from Autonomous System (AS)-level adversaries, 42% from colluding AS-level adversaries, and 85% from state-level adversaries. In addition, we find that in some regions (notably, China and Iran) there exist many cases where over 95% of all possible circuits are vulnerable to correlation attacks, emphasizing the need for AS-aware relay-selection. To mitigate the threat of such attacks, we build Astoria--an AS-aware Tor client. Astoria leverages recent developments in network measurement to perform path-prediction and intelligent relay selection. Astoria reduces the number of vulnerable circuits to 2% against AS-level adversaries, under 5% against colluding AS-level adversaries, and 25% against state-level adversaries. In addition, Astoria load balances across the Tor network so as to not overload any set of relays.Comment: Appearing at NDSS 201

    ATOM: A Generalizable Technique for Inferring Tracker-Advertiser Data Sharing in the Online Behavioral Advertising Ecosystem

    Full text link
    Data sharing between online trackers and advertisers is a key component in online behavioral advertising. This sharing can be facilitated through a variety of processes, including those not observable to the user's browser. The unobservability of these processes limits the ability of researchers and auditors seeking to verify compliance with regulations which require complete disclosure of data sharing partners. Unfortunately, the applicability of existing techniques to make inferences about unobservable data sharing relationships is limited due to their dependence on protocol- or case-specific artifacts of the online behavioral advertising ecosystem (e.g., they work only when client-side header bidding is used for ad delivery or when advertisers perform ad retargeting). As behavioral advertising technologies continue to evolve rapidly, the availability of these artifacts and the effectiveness of transparency solutions dependent on them remain ephemeral. In this paper, we propose a generalizable technique, called ATOM, to infer data sharing relationships between online trackers and advertisers. ATOM is different from prior work in that it is universally applicable -- i.e., independent of ad delivery protocols or availability of artifacts. ATOM leverages the insight that by the very nature of behavioral advertising, ad creatives themselves can be used to infer data sharing between trackers and advertisers -- after all, the topics and brands showcased in an ad are dependent on the data available to the advertiser. Therefore, by selectively blocking trackers and monitoring changes in the characteristics of ads delivered by advertisers, ATOM is able to identify data sharing relationships between trackers and advertisers. The relationships discovered by our implementation of ATOM include those not found using prior approaches and are validated by external sources.Comment: Accepted at PETS'22 16 Pages 3 Tables 2 Figure

    The Inventory is Dark and Full of Misinformation: Understanding the Abuse of Ad Inventory Pooling in the Ad-Tech Supply Chain

    Full text link
    Ad-tech enables publishers to programmatically sell their ad inventory to millions of demand partners through a complex supply chain. Bogus or low quality publishers can exploit the opaque nature of the ad-tech to deceptively monetize their ad inventory. In this paper, we investigate for the first time how misinformation sites subvert the ad-tech transparency standards and pool their ad inventory with unrelated sites to circumvent brand safety protections. We find that a few major ad exchanges are disproportionately responsible for the dark pools that are exploited by misinformation websites. We further find evidence that dark pooling allows misinformation sites to deceptively sell their ad inventory to reputable brands. We conclude with a discussion of potential countermeasures such as better vetting of ad exchange partners, adoption of new ad-tech transparency standards that enable end-to-end validation of the ad-tech supply chain, as well as widespread deployment of independent audits like ours.Comment: To appear at IEEE Symposium on Security & Privacy (Oakland) 202
    corecore