21 research outputs found

    Environment Friendly Voltage Up-gradation Model for Distribution Power Systems

    Get PDF
    The main aim of this research work is to analyze and develop voltage up gradation procedure model for effective & economic power distribution in urban and suburban area. Voltage up gradation from 6.6KV to 11KV of the distribution power system network has been considered for the proposed research work. Electric power consumption has been increasing uninterruptedly, being this increase specially accelerated in the last few years. Nowadays electric lines are saturated; they are reaching critical values of ampere capacity and sag. Therefore, building new lines has been necessary to provide the ever increasing consumption.  The difficulty to find new corridors to construct new distribution lines, underground cables is increasing in cities, industrial areas and in many cases it is simply impossible. The construction of new electric lines is increasing difficulty, thus there is a need to look at alternatives that increases the power transfer capacity. Voltage up gradation of the existing electric cables/lines of the distribution system is the most viable solution and it stresses on the savings of power due to a reduction in system losses when the voltage is high. The proposed research work is to develop and analyze voltage up gradation procedures and protocols for converting 6.6KV network into 11KV network in a distributed system. It also takes into account the expenses incurred in the process and the various other important constraints

    Effective Cable Sizing model for Building Electrical Services

    Get PDF
    This paper mainly focuses on the sizing of electrical cables (i.e.cross-sectional area) and its accomplishment in various international standards. Cable sizing methods are at variance across international standards. For example, International Electrotechnical Commission (IEC), National Electrical Code (NEC), British Standard (BS) and Institute of Electrical and Electronics Engineers (IEEE). The basic philosophy underlying any cable sizing calculation is to develop a procedure model on cable sizing. The main objective of this research work is to develop effective cable sizing model for building services

    An Effective Cable Sizing Procedure Model for Industries and Commerial Buildings

    Get PDF
    This paper mainly focuses on the cable sizing methods and calculation of electrical cables according to the various international standards. For instance, International Electrotechnical Commission (IEC), National Electrical Code (NEC), British Standard (BS) and Institute of Electrical and Electronics Engineers (IEEE). The basic philosophy underlying any cable sizing calculations are the same. The main objective of this research work is to develop effective cable sizing model for building services

    Logixpro Based Scada Simlations Model for Packaging System in Dry ICE Plant

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems control and monitor industrial and critical infrastructure functions, such as electricity, gas, water, waste, railway, and traffic. The main objective of this work is to develop SCADA simulation model for packaging system in dry ice plant. Dry ice is an important refrigerant for keeping foods cold and preventing bacterial growth during shipment. Dry ice used for cooling or freezing foods must be very clean and considered food grade to ensure that food it may touch will not be contaminated. Some recent developments for its use include using the pellets in blasting or cleaning and its increasing use in transporting medical specimens, including hearts, limbs, and tissues, for reattachment and transplantation. The manufacturing process of dry ice has not changed significantly in many decades and is a relatively simple process of pressurizing and cooling gaseous carbon dioxide. But because of its growing demand, packaging becomes vital. An attempt has been made to develop and automate LOGIXPRO based SCADA simulations for dry ice plant to improve packaging and extensively reduce operating labor costs

    Voltage Stability Analysis and Stability Improvement of Power System

    Get PDF
    The main objective of this research work is to analysis the voltage stability of the power system network and its improvement in the network.voltage stability of a power system. A system enters a state of voltage instability when a disturbance, increase in load demand, or change in system condition causes a progressive and an uncontrollable drop in voltage or voltage collapse. The continuing increase in demand for electric power has resulted in an increasingly complex, interconnected system, forced to operate closer to the limits of the stability. This has necessitated the implementation of techniques for analyzing and detecting voltage collapse in bus bar or lines prior to its occurrence. Simple Newton Raphson algorithm based voltage stability analysis has been carried out. Matlab based simulations for all the factors that causes voltage instability has been implemented and analyzed for an IEEE 30 bus system. The proposed model is able to identify the behavior of the power systems, network under various voltage stability conditions and its possibility of recovery/stability improvement of the power system network has been discussed

    Analysis of DLA-DQB1 and polymorphisms in CTLA4 in Cocker spaniels affected with immune-mediated haemolytic anaemia

    Get PDF
    BACKGROUND: Cocker spaniels are predisposed to immune-mediated haemolytic anaemia (IMHA), suggesting that genetic factors influence disease susceptibility. Dog leukocyte antigen (DLA) class II genes encode major histocompatibility complex (MHC) molecules that are involved in antigen presentation to CD4(+) T cells. Several DLA haplotypes have been associated with autoimmune disease, including IMHA, in dogs, and breed specific differences have been identified. Cytotoxic T lymphocyte antigen 4 (CTLA4) is a critical molecule involved in the regulation of T-cell responses. Single nucleotide polymorphisms (SNPs) in the CTLA4 promoter have been shown to be associated with several autoimmune diseases in humans and more recently with diabetes mellitus and hypoadrenocorticism in dogs. The aim of the present study was to investigate whether DLA-DQB1 alleles or CTLA4 promoter variability are associated with risk of IMHA in Cocker spaniels. RESULTS: There were a restricted number of DLA-DQB1 alleles identified, with a high prevalence of DLA-DQB1*007:01 in both groups. A high prevalence of DLA-DQB1 homozygosity was identified, although there was no significant difference between IMHA cases and controls. CTLA4 promoter haplotype diversity was limited in Cocker spaniels, with all dogs expressing at least one copy of haplotype 8. There was no significant difference comparing haplotypes in the IMHA affected group versus control group (p = 0.23). Homozygosity for haplotype 8 was common in Cocker spaniels with IMHA (27/29; 93 %) and in controls (52/63; 83 %), with no statistically significant difference in prevalence between the two groups (p = 0.22). CONCLUSIONS: DLA-DQB1 allele and CTLA4 promoter haplotype were not found to be significantly associated with IMHA in Cocker spaniels. Homozygosity for DLA-DQB1*007:01 and the presence of CTLA4 haplotype 8 in Cocker spaniels might increase overall susceptibility to IMHA in this breed, with other genetic and environmental factors involved in disease expression and progression

    Virtual Stability Estimator Model for Three Phase Power System Network

    Get PDF
    The main objective of this research work is to develop a simple power systems steady state stability estimator in LabView for three phase power system network. LabVIEW based power systems stability estimator has been chosen as the main platform because it is a user friendly and easy to apply in power systems. This research work is intended to simultaneously acclimate the power system engineers with the utilization of LabVIEW with electrical power systems. This proposed work will discuss about the configuration and the improvement of the intelligent instructional VI (virtual instrument) modules in power systems for power systems stability solutions. In the proposed model power systems stability has been carried out and model has been developed such that it can accommodate the latest versions of power systems stability algorithms
    corecore