4 research outputs found

    Early onset esophageal adenocarcinoma: A distinct molecular entity?

    Get PDF
    Esophageal adenocarcinoma (EAC) is typically diagnosed in elderly with a median age of 68 years. The incidence of EAC has been rising over the last decades, also among young adults. The aim of the study was to investigate whether early onset EAC is a distinct molecular entity. To identify early onset EACs, the nationwide network and registry of histo- and cytopathology in the Netherlands (PALGA) was searched. Twenty-eight tumors of patients aged ≤40 years were selected and matched with 27 tumors of patients aged =68 years. DNA was isolated from surgically resected specimen and sequenced on the Ion Torrent Personal Genome Machine with the Ion AmpliSeq Cancer Panel. No differences in mutational load between early onset and conventional EACs were observed (P=0.196). The most frequently mutated genes were TP53 (73%) and P16 (16%). Additional mutations in early onset EACs occurred exclusively in: APC, CDH1, CTNNB1, FGFR2, and STK11. In the conventional EACs additional mutations were exclusively identified in: ABL1, FBXW7, GNA11, GNAS, KRAS, MET, SMAD4, and VHL. Additional mutations besides TP53 and P16 seem to occur in different genes related to cell fate pathways for early onset EACs, while the additional mutations in conventional EACs are related to survival pathways

    Germline variant in MSX1 identified in a Dutch family with clustering of Barrett’s esophagus and esophageal adenocarcinoma

    Get PDF
    The vast majority of esophageal adenocarcinoma cases are sporadic and caused by somatic mutations. However, over the last decades several families have been identified with clustering of Barrett’s esophagus and esophageal adenocarcinoma. This observation suggests that one or more hereditary factors may play a role in the initiation of Barrett’s esophagus and esophageal adenocarcinoma in these families. A Dutch family with clustering of Barrett’s esophagus and esophageal adenocarcinoma was identified. Normal DNA obtained from the proband diagnosed with Barrett’s esophagus was analyzed with SNP array and exome sequencing. A custom-made panel consisting of potential germline variants was verified in the normal DNA of the affected family members. In addition, the respective tumors were analyzed for somatic loss of the wild type allele or the presence of an inactivating somatic mutation in the wild type allele. Exome sequencing revealed 244 candidate variants in the normal DNA of the proband, of which 212 variants were verified successfully. After the normal DNA of the affected family members was analyzed for the presence of the 212 potential germline variants and subsequently the respective tumors, only one potential germline variant in MSX1 (chr4: 4861985 T > G, c.359T > G, p.V120G, NM_002448) showed loss of the wild type allele in the tumor DNAs of the affected family members. A germline variant in MSX1 was identified in a Dutch family with clustering of Barrett’s esophagus and esophageal adenocarcinoma. This finding indicates that the germline defect in MSX1 may be associated with Barrett’s esophagus and cancer in this particular family

    Single nucleotide polymorphisms in CRTC1 and BARX1 are associated with esophageal adenocarcinoma

    No full text
    Objective: Recently, single nucleotide polymorphisms (SNPs) associated with esophageal adenocarcinoma (EAC) and Barrett's esophagus (BE) were identified; rs10419226 (CRTC10), rs11789015 (BARX1), rs2687201 (FOXP10), rs2178146 (FOXF1), rs3111601 (FOXF10), and rs9936833 (FOXF1). These findings indicate that genetic susceptibility could play a role in the initiation of EAC in BE patients. The aim of this study was to validate the association between these previously identified SNPs and the risk of EAC in an independent and large case-control study. Design: Six SNPs found to be associated with EAC and BE were genotyped by a multiplex SNaPshot analysis in 1071 EAC patients diagnosed and treated in the Netherlands. Allele frequencies were compared to a control group derived from the Rotterdam Study, a population-based prospective cohort study (n = 6206). Logistic regression analysis and meta-analysis were performed to calculate odds ratios (OR). Results: Rs10419226 (CRTC1) showed a significantly increased EAC risk for the minor allele (OR = 1.17, P = 0.001), and rs11789015 (BARX1) showed a significantly decreased risk for the minor allele (OR = 0.85, P = 0.004) in the logistic regression analysis. The meta-analysis of the original GWAS and the current study revealed an improved level of significance for rs10419226 (CRTC1) (OR = 1.18, P = 6.66 × 10-10 ) and rs11789015 (BARX1) (OR = 0.83, P = 1.13 × 10-8 ). Conclusions: This independent and large Dutch case-control study confirms the association of rs10419226 (CRTC1) and rs11789015 (BARX1) with the risk of EAC. These findings suggest a contribution of the patient genetic make-up to the development of EAC and might contribute to gain more insight in the etiology of this cancer
    corecore