12 research outputs found

    Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner

    Get PDF
    How cytokine-driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)-1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF-κB at regions that are highly enriched for inflammatory disease-relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL-1α-inducible IL8 and CXCL1-3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL-1α/TAK1-inducible manner. Microdeletions of p65-binding sites in either of the two enhancers impair NF-κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher-order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 “master” enhancer in the regulation of sustained IL-1α signaling, as well as for IL-8 and IL-6 secretion. CRISPR-guided transactivation of the IL8 locus or cross-TAD regulation by TNFα-responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF-κB

    Prostacyclin Released by Cancer-Associated Fibroblasts Promotes Immunosuppressive and Pro-Metastatic Macrophage Polarization in the Ovarian Cancer Microenvironment

    No full text
    Metastasis of high-grade ovarian carcinoma (HGSC) is orchestrated by soluble mediators of the tumor microenvironment. Here, we have used transcriptomic profiling to identify lipid-mediated signaling pathways encompassing 41 ligand-synthesizing enzymes and 23 cognate receptors in tumor, immune and stroma cells from HGSC metastases and ascites. Due to its strong association with a poor clinical outcome, prostacyclin (PGI2) synthase (PTGIS) is of particular interest in this signaling network. PTGIS is highly expressed by cancer-associated fibroblasts (CAF), concomitant with elevated PGI2 synthesis, whereas tumor-associated macrophages (TAM) exhibit the highest expression of its surface receptor (PTGIR). PTGIR activation by PGI2 agonists triggered cAMP accumulation and induced a mixed-polarization macrophage phenotype with altered inflammatory gene expression, including CXCL10 and IL12A repression, as well as reduced phagocytic capability. Co-culture experiments provided further evidence for the interaction of CAF with macrophages via PGI2, as the effect of PGI2 agonists on phagocytosis was mitigated by cyclooxygenase inhibitors. Furthermore, conditioned medium from PGI2-agonist-treated TAM promoted tumor adhesion to mesothelial cells and migration in a PTGIR-dependent manner, and PTGIR activation induced the expression of metastasis-associated and pro-angiogenic genes. Taken together, our study identifies a PGI2/PTGIR-driven crosstalk between CAF, TAM and tumor cells, promoting immune suppression and a pro-metastatic environment

    Amplifying side channels through performance degradation

    Get PDF
    Interference between processes executing on shared hardware can be used to mount performance-degradation attacks. However, in most cases, such attacks offer little benefit for the adversary. In this paper, we demonstrate that software-based performancedegradation attacks can be used to amplify side-channel leaks, enabling the adversary to increase both the amount and the quality of information captured. We identify a new information leak in the OpenSSL implementation of the ECDSA digital signature algorithm, albeit seemingly unexploitable due to the limited granularity of previous trace procurement techniques. To overcome this imposing hurdle, we combine the information leak with a microarchitectural performancedegradation attack that can slow victims down by a factor of over 150. We demonstrate how this combination enables the amplification of a side-channel sufficiently to exploit this new information leak. Using the combined attack, an adversary can break a private key of the secp256k1 curve, used in the Bitcoin protocol, after observing only 6 signatures-a four-fold improvement over all previously described attacks.Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, Yuval Yaro
    corecore