4 research outputs found

    Infection with Pythium flevoense in a harbour porpoise (Phocoena phocoena) as a novel cause of dermatitis in marine mammals

    Get PDF
    The oomycete Pythium flevoense was diagnosed as the cause of dermatitis in a young adult female harbour porpoise (Phocoena phocoena) that had been trapped in a pound net in a temperate saltwater environment. Disease from Pythium sp. infection-pythiosis-is infrequently diagnosed in humans, horses, dogs, cattle, and few other mammalian species. Pythiosis is typically associated with exposure to tropical or subtropical freshwater conditions, and typically caused by Pythium insidiosum. However, until now, pythiosis has been reported in neither marine mammals nor temperate saltwater conditions, and P. flevoense is not known as a cause of pythiosis in mammals. This porpoise developed generalised dermatitis despite treatment and euthanasia was necessary. Histopathological evaluation revealed a chronic active erosive dermatitis, with intralesional hyphae morphologically consistent with a Pythium sp. PCR analysis and sequencing of affected skin matched Pythium flevoense with a 100% similarity to the reference strain. Additional diagnostics excluded other pathogens. Based on this case report, P. flevoense needs to be considered as a mammalian pathogen. Furthermore, harbour porpoises and possibly other marine mammals may be at risk of infection with P. flevoense, and pythiosis should be included in the differential diagnosis of dermatitis in marine mammals.</p

    Azole resistance in Aspergillus fumigatus. The first 2-year's Data from the Danish National Surveillance Study, 2018-2020

    Get PDF
    BACKGROUND: Azole resistance complicates treatment of patients with invasive aspergillosis with an increased mortality. Azole resistance in Aspergillus fumigatus is a growing problem and associated with human and environmental azole use. Denmark has a considerable and highly efficient agricultural sector. Following reports on environmental azole resistance in A. fumigatus from Danish patients, the ministry of health requested a prospective national surveillance of azole‐resistant A. fumigatus and particularly that of environmental origin. OBJECTIVES: To present the data from the first 2 years of the surveillance programme. METHODS: Unique isolates regarded as clinically relevant and any A. fumigatus isolated on a preferred weekday (background samples) were included. EUCAST susceptibility testing was performed and azole‐resistant isolates underwent cyp51A gene sequencing. RESULTS: The azole resistance prevalence was 6.1% (66/1083) at patient level. The TR(34)/L98H prevalence was 3.6% (39/1083) and included the variants TR(34)/L98H, TR(34) (3)/L98H and TR(34)/L98H/S297T/F495I. Resistance caused by other Cyp51A variants accounted for 1.3% (14/1083) and included G54R, P216S, F219L, G54W, M220I, M220K, M220R, G432S, G448S and Y121F alterations. Non‐Cyp51A‐mediated resistance accounted for 1.2% (13/1083). Proportionally, TR(34)/L98H, other Cyp51A variants and non‐Cyp51A‐mediated resistance accounted for 59.1% (39/66), 21.2% (14/66) and 19.7% (13/66), respectively, of all resistance. Azole resistance was detected in all five regions in Denmark, and TR(34)/L98H specifically, in four of five regions during the surveillance period. CONCLUSION: The azole resistance prevalence does not lead to a change in the initial treatment of aspergillosis at this point, but causes concern and leads to therapeutic challenges in the affected patients

    Pan-Echinocandin Resistant C. parapsilosis Harboring an F652S Fks1 Alteration in a Patient with Prolonged Echinocandin Therapy

    No full text
    The isolation of a pan-echinocandin-resistant Candida parapsilosis strain (anidulafungin, caspofungin, micafungin and rezafungin EUCAST MICs &gt; 8 mg/L) from urine of a patient following prolonged exposure to echinocandins (38 days of micafungin followed by 16 days of anidulafungin) is described. The isolate harbored the novel alteration F652S in the hotspot 1 region of fks1. Isogenic C. parapsilosis bloodstream isolates collected up to 1.5 months earlier from the same patient were susceptible to echinocandins (anidulafungin, caspofungin and micafungin EUCAST MICs 1&ndash;2, 1 and 1 mg/L, respectively) and contained wild-type FKS1 sequences. This is the first report of pan-echinocandin resistance in C. parapsilosis associated with an aminoacid change in hotspot 1 region of fks1
    corecore