28 research outputs found

    Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease

    No full text
    Mitochondria are essential organelles within the cell where most ATP is produced through oxidative phosphorylation (OXPHOS). A subset of the genes needed for this process are encoded by the mitochondrial DNA (mtDNA). One consequence of OXPHOS is the production of mitochondrial reactive oxygen species (ROS), whose role in mediating cellular damage, particularly in damaging mtDNA during ageing, has been controversial. There are subsets of neurons that appear to be more sensitive to ROS-induced damage, and mitochondrial dysfunction has been associated with several neurodegenerative disorders. In this review, we will discuss the current knowledge in the field of mtDNA and neurodegeneration, the debate about ROS as a pathological or beneficial contributor to neuronal function, bona fide mtDNA diseases, and insights from mouse models of mtDNA defects affecting the central nervous system

    Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches

    No full text
    Mitochondrial DNA (mtDNA) encodes a subset of the genes which are responsible for oxidative phosphorylation. Pathogenic mutations in the human mtDNA are often heteroplasmic, where wild-type mtDNA species co-exist with the pathogenic mtDNA and a bioenergetic defect is only seen when the pathogenic mtDNA percentage surpasses a threshold for biochemical manifestations. mtDNA segregation during germline development can explain some of the extreme variation in heteroplasmy from one generation to the next. Patients with high heteroplasmy for deleterious mtDNA species will likely suffer from bona-fide mitochondrial diseases, which currently have no cure. Shifting mtDNA heteroplasmy toward the wild-type mtDNA species could provide a therapeutic option to patients. Mitochondrially targeted engineered nucleases, such as mitoTALENs and mitoZFNs, have been used in vitro in human cells harboring pathogenic patient-derived mtDNA mutations and more recently in vivo in a mouse model of a pathogenic mtDNA point mutation. These gene therapy tools for shifting mtDNA heteroplasmy can also be used in conjunction with other therapies aimed at eliminating and/or preventing the transfer of pathogenic mtDNA from mother to child

    Long Term Flux Profile of Implanon Birth Control Implant

    Full text link
    Hormonal birth control methods have become increasingly popular since 2000, as the technology becomes more convenient for users, moving from daily pills, to weekly patches, to yearly implants. Implanon is an example of a long-term birth control implant. The goal of this project is to create an accurate computational model of Implanon’s hormone diffusion over its standard prescription length: three years. Because Implanon is intended for long-term use, any potential improvements in the drug or release mechanism take several years to clinically test. It is time and cost inefficient to develop several new designs and test them all over this long time period. Instead, we can eliminate those designs that fail to reach specifications in our computer model and be more confident in the clinical success of those that function properly in our computer model, thus reducing the number of clinical trials needed and the time and money spent. We created a two-dimensional cross section model of the Implanon implant and surrounding tissue under mass transfer conditions model using COMSOL Multiphysics software. We confirmed our model’s accuracy with comparisons to published Implanon hormone release rates at six weeks, one year, two years, and three years. Our model’s hormone release rate was found to stay within a factor of 10 of the published data at all critical time periods. This data is significant in that it has the potential to expedite the hormone modification process. There were several assumptions made in the model’s schematic design as well as material properties and boundary parameters. It is recommended that more in vivo experimentation and data gathering on Implanon implant placement and hormone diffusivity be conducted to improve this model’s accuracy

    Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease

    No full text
    is the most common gene mutated in monogenic recessive familial cases of Parkinson's disease (PD). Pathogenic mutations cause a loss of function of the encoded protein Parkin. ParkinKO mice, however, poorly represent human PD symptoms as they only exhibit mild motor phenotypes, minor dopamine metabolism abnormalities, and no signs of dopaminergic neurodegeneration. Parkin has been shown to participate in mitochondrial turnover, by targeting damaged mitochondria with low membrane potential to mitophagy. We studied the role of Parkin on mitochondrial quality control by knocking out Parkin in the PD-mito- I mouse (males), where the mitochondrial DNA (mtDNA) undergoes double-strand breaks only in dopaminergic neurons. The lack of Parkin promoted earlier onset of dopaminergic neurodegeneration and motor defects in the PD-mito- I mice, but it did not worsen the pathology. The lack of Parkin affected mitochondrial morphology in dopaminergic axons and was associated with an increase in mtDNA levels (mutant and wild type). Unexpectedly, it did not cause a parallel increase in mitochondrial mass or mitophagy. Our results suggest that Parkin affects mtDNA levels in a mitophagy-independent manner. Parkinson's disease is characterized by progressive motor symptoms due to the selective loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations of Parkin cause some monogenic forms of Parkinson's disease, possibly through its role in mitochondrial turnover and quality control. To study whether Parkin has a role in the context of mitochondrial damage, we knocked out Parkin in a mouse model in which the mitochondrial DNA is damaged in dopaminergic neurons. We found that the loss of Parkin did not exacerbate the parkinsonian pathology already present in the mice, but it was associated with an increase in mtDNA levels (mutant and wild-type) without altering mitochondrial mass. These results shed new light on the function of Parkin
    corecore