5 research outputs found

    Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival.

    No full text
    BACKGROUND: The objective of this study was to characterize hypernatremia patients at hospital admission into clusters using an unsupervised machine learning approach and to evaluate the mortality risk among these distinct clusters. METHODS: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 922 hospitalized adult patients with admission serum sodium of \u3e 145 mEq/L. We calculated the standardized difference of each variable to identify each cluster\u27s key features. We assessed the association of each hypernatremia cluster with hospital and 1-year mortality. RESULTS: There were three distinct clusters of patients with hypernatremia on admission: 318 (34%) patients in cluster 1, 339 (37%) patients in cluster 2, and 265 (29%) patients in cluster 3. Cluster 1 consisted of more critically ill patients with more severe hypernatremia and hypokalemic hyperchloremic metabolic acidosis. Cluster 2 consisted of older patients with more comorbidity burden, body mass index, and metabolic alkalosis. Cluster 3 consisted of younger patients with less comorbidity burden, higher baseline eGFR, hemoglobin, and serum albumin. Compared to cluster 3, odds ratios for hospital mortality were 15.74 (95% CI 3.75-66.18) for cluster 1, and 6.51 (95% CI 1.48-28.59) for cluster 2, whereas hazard ratios for 1-year mortality were 6.25 (95% CI 3.69-11.46) for cluster 1 and 4.66 (95% CI 2.73-8.59) for cluster 2. CONCLUSION: Our cluster analysis identified three clinically distinct phenotypes with differing mortality risk in patients hospitalized with hypernatremia

    Machine Learning Consensus Clustering Approach for Hospitalized Patients with Phosphate Derangements

    No full text
    Background: The goal of this study was to categorize patients with abnormal serum phosphate upon hospital admission into distinct clusters utilizing an unsupervised machine learning approach, and to assess the mortality risk associated with these clusters. Methods: We utilized the consensus clustering approach on demographic information, comorbidities, principal diagnoses, and laboratory data of hypophosphatemia (serum phosphate ≤ 2.4 mg/dL) and hyperphosphatemia cohorts (serum phosphate ≥ 4.6 mg/dL). The standardized mean difference was applied to determine each cluster’s key features. We assessed the association of the clusters with mortality. Results: In the hypophosphatemia cohort (n = 3113), the consensus cluster analysis identified two clusters. The key features of patients in Cluster 2, compared with Cluster 1, included: older age; a higher comorbidity burden, particularly hypertension; diabetes mellitus; coronary artery disease; lower eGFR; and more acute kidney injury (AKI) at admission. Cluster 2 had a comparable hospital mortality (3.7% vs. 2.9%; p = 0.17), but a higher one-year mortality (26.8% vs. 14.0%; p < 0.001), and five-year mortality (20.2% vs. 44.3%; p < 0.001), compared to Cluster 1. In the hyperphosphatemia cohort (n = 7252), the analysis identified two clusters. The key features of patients in Cluster 2, compared with Cluster 1, included: older age; more primary admission for kidney disease; more history of hypertension; more end-stage kidney disease; more AKI at admission; and higher admission potassium, magnesium, and phosphate. Cluster 2 had a higher hospital (8.9% vs. 2.4%; p < 0.001) one-year mortality (32.9% vs. 14.8%; p < 0.001), and five-year mortality (24.5% vs. 51.1%; p < 0.001), compared with Cluster 1. Conclusion: Our cluster analysis classified clinically distinct phenotypes with different mortality risks among hospitalized patients with serum phosphate derangements. Age, comorbidities, and kidney function were the key features that differentiated the phenotypes

    Clinically Distinct Subtypes of Acute Kidney Injury on Hospital Admission Identified by Machine Learning Consensus Clustering

    No full text
    Background: We aimed to cluster patients with acute kidney injury at hospital admission into clinically distinct subtypes using an unsupervised machine learning approach and assess the mortality risk among the distinct clusters. Methods: We performed consensus clustering analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 4289 hospitalized adult patients with acute kidney injury at admission. The standardized difference of each variable was calculated to identify each cluster’s key features. We assessed the association of each acute kidney injury cluster with hospital and one-year mortality. Results: Consensus clustering analysis identified four distinct clusters. There were 1201 (28%) patients in cluster 1, 1396 (33%) patients in cluster 2, 1191 (28%) patients in cluster 3, and 501 (12%) patients in cluster 4. Cluster 1 patients were the youngest and had the least comorbidities. Cluster 2 and cluster 3 patients were older and had lower baseline kidney function. Cluster 2 patients had lower serum bicarbonate, strong ion difference, and hemoglobin, but higher serum chloride, whereas cluster 3 patients had lower serum chloride but higher serum bicarbonate and strong ion difference. Cluster 4 patients were younger and more likely to be admitted for genitourinary disease and infectious disease but less likely to be admitted for cardiovascular disease. Cluster 4 patients also had more severe acute kidney injury, lower serum sodium, serum chloride, and serum bicarbonate, but higher serum potassium and anion gap. Cluster 2, 3, and 4 patients had significantly higher hospital and one-year mortality than cluster 1 patients (p < 0.001). Conclusion: Our study demonstrated using machine learning consensus clustering analysis to characterize a heterogeneous cohort of patients with acute kidney injury on hospital admission into four clinically distinct clusters with different associated mortality risks

    Clinically Distinct Subtypes of Acute Kidney Injury on Hospital Admission Identified by Machine Learning Consensus Clustering

    No full text
    Background: We aimed to cluster patients with acute kidney injury at hospital admission into clinically distinct subtypes using an unsupervised machine learning approach and assess the mortality risk among the distinct clusters. Methods: We performed consensus clustering analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 4289 hospitalized adult patients with acute kidney injury at admission. The standardized difference of each variable was calculated to identify each cluster’s key features. We assessed the association of each acute kidney injury cluster with hospital and one-year mortality. Results: Consensus clustering analysis identified four distinct clusters. There were 1201 (28%) patients in cluster 1, 1396 (33%) patients in cluster 2, 1191 (28%) patients in cluster 3, and 501 (12%) patients in cluster 4. Cluster 1 patients were the youngest and had the least comorbidities. Cluster 2 and cluster 3 patients were older and had lower baseline kidney function. Cluster 2 patients had lower serum bicarbonate, strong ion difference, and hemoglobin, but higher serum chloride, whereas cluster 3 patients had lower serum chloride but higher serum bicarbonate and strong ion difference. Cluster 4 patients were younger and more likely to be admitted for genitourinary disease and infectious disease but less likely to be admitted for cardiovascular disease. Cluster 4 patients also had more severe acute kidney injury, lower serum sodium, serum chloride, and serum bicarbonate, but higher serum potassium and anion gap. Cluster 2, 3, and 4 patients had significantly higher hospital and one-year mortality than cluster 1 patients (p &lt; 0.001). Conclusion: Our study demonstrated using machine learning consensus clustering analysis to characterize a heterogeneous cohort of patients with acute kidney injury on hospital admission into four clinically distinct clusters with different associated mortality risks

    Machine Learning Consensus Clustering of Hospitalized Patients with Admission Hyponatremia

    No full text
    Background: The objective of this study was to characterize patients with hyponatremia at hospital admission into clusters using an unsupervised machine learning approach, and to evaluate the short- and long-term mortality risk among these distinct clusters. Methods: We performed consensus cluster analysis based on demographic information, principal diagnoses, comorbidities, and laboratory data among 11,099 hospitalized adult hyponatremia patients with an admission serum sodium below 135 mEq/L. The standardized mean difference was utilized to identify each cluster’s key features. We assessed the association of each hyponatremia cluster with hospital and one-year mortality using logistic and Cox proportional hazard analysis, respectively. Results: There were three distinct clusters of hyponatremia patients: 2033 (18%) in cluster 1, 3064 (28%) in cluster 2, and 6002 (54%) in cluster 3. Among these three distinct clusters, clusters 3 patients were the youngest, had lowest comorbidity burden, and highest kidney function. Cluster 1 patients were more likely to be admitted for genitourinary disease, and have diabetes and end-stage kidney disease. Cluster 1 patients had the lowest kidney function, serum bicarbonate, and hemoglobin, but highest serum potassium and prevalence of acute kidney injury. In contrast, cluster 2 patients were the oldest and were more likely to be admitted for respiratory disease, have coronary artery disease, congestive heart failure, stroke, and chronic obstructive pulmonary disease. Cluster 2 patients had lowest serum sodium and serum chloride, but highest serum bicarbonate. Cluster 1 patients had the highest hospital mortality and one-year mortality, followed by cluster 2 and cluster 3, respectively. Conclusion: We identified three clinically distinct phenotypes with differing mortality risks in a heterogeneous cohort of hospitalized hyponatremic patients using an unsupervised machine learning approach
    corecore