4 research outputs found
Connection between slow and fast dynamics of molecular liquids around the glass transition
The mean-square displacement (MSD) was measured by neutron scattering at
various temperatures and pressures for a number of molecular glass-forming
liquids. The MSD is invariant along the glass-transition line at the pressure
studied, thus establishing an ``intrinsic'' Lindemann criterion for any given
liquid. A one-to-one connection between the MSD's temperature dependence and
the liquid's fragility is found when the MSD is evaluated on a time scale of
approximately 4 nanoseconds, but does not hold when the MSD is evaluated at
shorter times. The findings are discussed in terms of the elastic model and the
role of relaxations, and the correlations between slow and fast dynamics are
addressed.Comment: accepted by Phys Rev E (2010
On the correlation between fragility and stretching in glassforming liquids
We study the pressure and temperature dependences of the dielectric
relaxation of two molecular glassforming liquids, dibutyl phtalate and
m-toluidine. We focus on two characteristics of the slowing down of relaxation,
the fragility associated with the temperature dependence and the stretching
characterizing the relaxation function. We combine our data with data from the
literature to revisit the proposed correlation between these two quantities. We
do this in light of constraints that we suggest to put on the search for
empirical correlations among properties of glassformers. In particular, argue
that a meaningful correlation is to be looked for between stretching and
isochoric fragility, as both seem to be constant under isochronic conditions
and thereby reflect the intrinsic effect of temperature