4 research outputs found

    Evolution of major milk proteins in Mus musculus and Mus spretus mouse species: a genoproteomic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to their high level of genotypic and phenotypic variability, <it>Mus spretus </it>strains were introduced in laboratories to investigate the genetic determinism of complex phenotypes including quantitative trait loci. <it>Mus spretus </it>diverged from <it>Mus musculus </it>around 2.5 million years ago and exhibits on average a single nucleotide polymorphism (SNP) in every 100 base pairs when compared with any of the classical laboratory strains. A genoproteomic approach was used to assess polymorphism of the major milk proteins between SEG/Pas and C57BL/6J, two inbred strains of mice representative of <it>Mus spretus </it>and <it>Mus musculus </it>species, respectively.</p> <p>Results</p> <p>The milk protein concentration was dramatically reduced in the SEG/Pas strain by comparison with the C57BL/6J strain (34 ± 9 g/L <it>vs</it>. 125 ± 12 g/L, respectively). Nine major proteins were identified in both milks using RP-HPLC, bi-dimensional electrophoresis and MALDI-Tof mass spectrometry. Two caseins (β and α<sub>s1</sub>) and the whey acidic protein (WAP), showed distinct chromatographic and electrophoresis behaviours. These differences were partly explained by the occurrence of amino acid substitutions and splicing variants revealed by cDNA sequencing. A total of 34 SNPs were identified in the coding and 3'untranslated regions of the SEG/Pas <it>Csn1s1 </it>(11), <it>Csn2 </it>(7) and <it>Wap </it>(8) genes. In addition, a 3 nucleotide deletion leading to the loss of a serine residue at position 93 was found in the SEG/Pas <it>Wap </it>gene.</p> <p>Conclusion</p> <p>SNP frequencies found in three milk protein-encoding genes between <it>Mus spretus </it>and <it>Mus musculus </it>is twice the values previously reported at the whole genome level. However, the protein structure and post-translational modifications seem not to be affected by SNPs characterized in our study. Splicing mechanisms (cryptic splice site usage, exon skipping, error-prone junction sequence), already identified in casein genes from other species, likely explain the existence of multiple α<sub>s1</sub>-casein isoforms both in SEG/Pas and C57BL/6J strains. Finally, we propose a possible mechanism by which the hallmark tandem duplication of a 18-nt exon (14 copies) may have occurred in the mouse genome.</p

    An increase in milk IgA correlates with both pIgR expression and IgA plasma cell accumulation in the lactating mammary gland of PRM/Alf mice

    No full text
    Chantier qualité GAIn mice, during late pregnancy and lactation, maternal precursors of IgA-containing cells (cIgA-cells) are primed in the gut and home to the mammary gland where they secrete IgA. In turn, the ensuing increase in milk IgA mediates immune protection of the newborn gastrointestinal tract. PRM/Alf is an inbred mouse strain which exhibits a substantial post-natal intestinal lengthening which develops throughout the neonatal suckling period, suggesting that the availability of cIg-A cells and the level of protective IgA in milk might also be increased. We confirmed that PRM/Alf milk contains higher amounts of IgA than C57BL/6J throughout lactation, concomitantly with an increase of pIgR on epithelial cells and a higher density of cIgA-cells in the PRM/Alf mammary gland. Furthermore, a search for variations in cellular and humoral factors implicated in regulating cIgA-cell migration towards the mammary gland, including the vascular addressins MAdCAM-1 (mucosal addressin cell adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) as well as the mucosal epithelial chemokine CCL28, did not reveal any quantitative differences in expression between PRM/Alf and C57BL/6J mice strains. Thus our results indicate that these factors are not limiting in the recruitment of cIgA-cells released from the elongated gut of PRM/Alf mice. In the context of intestinal lengthening, these findings strengthen the notion of an entero-mammary gland link, where the neonatal gut is protected by the maternal gut through the immune function of the mammary gland

    The major protein fraction of mouse milk revisited using proven proteomic tools

    No full text
    The PRM/Alf inbred mice exhibit a huge intestinal lengthening. Since milk contains bioactive factors implied in numerous biological processes, one hypothesis is that PRM/Alf milk contains intestinotrophic factors contributing to this remarkable phenotype. A comparison between the milk from PRM/Alf and C57BL/6J (as a control) strains could be helpful in the identification of such factors, including proteins. However, a complete description of the mouse milk major protein fraction is still missing. Hence we adapted a reliable technique to separate and identify the major mouse milk proteins. This approach was achieved through the protein study of milk from C57BL/6J and PWK/Pas strains representative of two Mus musculus subspecies, M. m. domesticus and M. m. musculus respectively. C57BL/6J milk samples were first skimmed and fractionated by reverse phase-HPLC (RP-HPLC). The protein content of each chromatographic peak was analysed by SDS-PAGE and identified by mass spectrometry. This methodological approach allowed characterization of nine major mouse milk proteins: αs1, β, γ, ε and κ-caseins, Whey Acidic Protein, lactoferrin, Serum Albumin, Fatty Acid Binding Protein, as well as an αs1-casein isoform. Then, RP-HPLC patterns of C57BL/6J milk proteins were compared with those obtained starting from the milk of PWK/Pas females. This comparison revealed a protein polymorphism for the αs1-casein
    corecore