20 research outputs found

    Occurrence of Hyperon Superfluidity in Neutron Star Cores

    Full text link
    Superfluidity of Λ\Lambda and Σ−\Sigma^- admixed in neutron star (NS) cores is investigated realistically for hyperon (YY)-mixed NS models obtained using a GG-matrix-based effective interaction approach. Numerical results for the equation of state (EOS) with the mixing ratios of the respective components and the hyperon energy gaps including the temperature dependence are presented. These are meant to serve as physical inputs for YY-cooling calculations of NSs. By paying attention to the uncertainties of the EOS and the YYYY interactions, it is shown that both Λ\Lambda and Σ−\Sigma^- are superfluid as soon as they appear although the magnitude of the critical temperature and the density region where superfluidity exists depend considerably on the YYYY pairing potential. Considering momentum triangle condition and the occurrence of superfluidity, it is found that a so-called `` hyperon cooling\rq\rq~(neutrino-emission from direct Urca process including YY) combined with YY-superfluidity may be able to account for observations of the colder class of NSs. It is remarked that Λ\Lambda-hyperons play a decisive role in the hyperon cooling scenario. Some comments are given regarding the consequences of the less attractive ΛΛ\Lambda\Lambda interaction recently suggested by the `` NAGARA event\rq\rq~ΛΛ6^6_{\Lambda\Lambda}He.Comment: 25 pages, 12figures; final version; will appear in Prog. THeor. Phys. Vol.115, No.

    Fluctuation properties of strength function associated with the giant quadrupole resonance in 208Pb

    Get PDF
    We performed fluctuation analysis by means of the local scaling dimension for the strength function of the isoscalar (IS) giant quadrupole resonance (GQR) in 208Pb where the strength function is obtained by the shell model calculation including 1p1h and 2p2h configurations. It is found that at almost all energy scales, fluctuation of the strength function obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. This is contrasted with the results for the GQR in 40Ca, where at the intermediate energy scale about 1.7 MeV a deviation from the GOE limit was detected. It is found that the physical origin for this different behavior of the local scaling dimension is ascribed to the difference in the properties of the damping process.Comment: 10 pages, 14 figures, submitted to Physical Review

    Fluctuation properties of strength functions associated with giant resonances

    Get PDF
    We performed fluctuation analysis by means of the local scaling dimension for the strength function of the isoscalar (IS) and the isovector (IV) giant quadrupole resonances (GQR) in 40^{40}Ca, where the strength functions are obtained by the shell model calculation within up to the 2p2h configurations. It is found that at small energy scale, fluctuation of the strength function almost obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. On the other hand, we found a deviation from the GOE limit at the intermediate energy scale about 1.7MeV for the IS and at 0.9MeV for the IV. The results imply that different types of fluctuations coexist at different energy scales. Detailed analysis strongly suggests that GOE fluctuation at small energy scale is due to the complicated nature of 2p2h states and that fluctuation at the intermediate energy scale is associated with the spreading width of the Tamm-Dancoff 1p1h states.Comment: 14 pages including 13figure

    Superconductivity in Sr2_2RuO4_4 Mediated by Coulomb Scattering

    Full text link
    We investigate the superconductivity in Sr2_2RuO4_4 on the basis of the three-dimensional three-band Hubbard model. We propose a model with Coulomb interactions among the electrons on the nearest-neighbor Ru sites. In our model the intersite Coulomb repulsion and exchange coupling can work as the effective interaction for the spin-triplet paring. This effective interaction is enhanced by the band hybridization, which is mediated by the interlayer transfers. We investigate the possibility of this mechanism in the ground state and find that the orbital dependent spin-triplet superconductivity is more stable than the spin-singlet one for realistic parameters. This spin-triplet superconducting state has horizontal line nodes on the Fermi surface.Comment: 13 pages, 4 figure

    Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: Comparison of the CGH profiles between cancer cell lines and primary cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell lines are commonly used in various kinds of biomedical research in the world. However, it remains uncertain whether genomic alterations existing in primary tumor tissues are represented in cell lines and whether cell lines carry cell line-specific genomic alterations. This study was performed to answer these questions.</p> <p>Methods</p> <p>Array-based comparative genomic hybridization (CGH) was employed with 4030 bacterial artificial chromosomes (BACs) that cover the genome at 1.0 megabase resolution to analyze DNA copy number aberrations (DCNAs) in 35 primary breast tumors and 24 breast cancer cell lines. DCNAs were compared between these two groups. A tissue microdissection technique was applied to primary tumor tissues to reduce the contamination of samples by normal tissue components.</p> <p>Results</p> <p>The average number of BAC clones with DCNAs was 1832 (45.3% of spotted clones) and 971 (24.9%) for cell lines and primary tumor tissues, respectively. Gains of 1q and 8q and losses of 8p, 11q, 16q and 17p were detected in >50% of primary cancer tissues. These aberrations were also frequently detected in cell lines. In addition to these alterations, the cell lines showed recurrent genomic alterations including gains of 5p14-15, 20q11 and 20q13 and losses of 4p13-p16, 18q12, 18q21, Xq21.1 and Xq26-q28 that were barely detected in tumor tissue specimens. These are considered to be cell line-specific DCNAs. The frequency of the HER2 amplification was high in both cell lines and tumor tissues, but it was statistically different between cell lines and primary tumors (P = 0.012); 41.3 ± 29.9% for the cell lines and 15.9 ± 18.6% for the tissue specimens.</p> <p>Conclusions</p> <p>Established cell lines carry cell lines-specific DCNAs together with recurrent aberrations detected in primary tumor tissues. It must therefore be emphasized that cell lines do not always represent the genotypes of parental tumor tissues.</p

    Nanomaterials by severe plastic deformation: review of historical developments and recent advances

    Get PDF
    International audienceSevere plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity

    Epidemiological survey of acute low-tone sensorineural hearing loss

    Get PDF
    Objectives: A nationwide epidemiological survey involving 23 hospitals in Japan was conducted and the predictive values of demographic data were examined statistically.Methods: A total of 642 patients from 23 hospitals, including 20 university hospitals, in Japan were enrolled in the study. Age ranged from 8 to 87 years, and all were diagnosed with acute low-tone sensorineural hearing loss (ALHL) between 1994 and 2016. Demographic data for the patients, such as symptoms, gender, mean age, and distribution of ALHL grading, were collected and analyzed in relation to prognosis using Student’s t-test, χ2 test and logistic regression.Results: Female gender (p < .013), younger age (p < .001), low-grade hearing loss (p < .001), and shorter interval between onset and initial visit (p < .004) were significantly predictive of a good prognosis. The prognosis for definite ALHL was significantly better than that for probable ALHL (p < .007).Conclusions: The severity of initial hearing loss, interval between onset and initial visit and age were important prognostic indicators for ALHL, while female gender was an important prognostic indicator peculiar to ALHL

    Double-giant-dipole resonance in ^<208>Pb

    No full text

    Properties of Hot Asymmetric Nuclear Matter

    Full text link
    corecore