2,147 research outputs found

    Points of Low Height on Elliptic Curves and Surfaces, I: Elliptic surfaces over P^1 with small d

    Get PDF
    For each of n=1,2,3 we find the minimal height h^(P) of a nontorsion point P of an elliptic curve E over C(T) of discriminant degree d=12n (equivalently, of arithmetic genus n), and exhibit all (E,P) attaining this minimum. The minimal h^(P) was known to equal 1/30 for n=1 (Oguiso-Shioda) and 11/420 for n=2 (Nishiyama), but the formulas for the general (E,P) were not known, nor was the fact that these are also the minima for an elliptic curve of discriminant degree 12n over a function field of any genus. For n=3 both the minimal height (23/840) and the explicit curves are new. These (E,P) also have the property that that mP is an integral point (a point of naive height zero) for each m=1,2,...,M, where M=6,8,9 for n=1,2,3; this, too, is maximal in each of the three cases.Comment: 15 pages; some lines in the TeX source are commented out with "%" to meet the 15-page limit for ANTS proceeding

    Unitary representations of nilpotent super Lie groups

    Full text link
    We show that irreducible unitary representations of nilpotent super Lie groups can be obtained by induction from a distinguished class of sub super Lie groups. These sub super Lie groups are natural analogues of polarizing subgroups that appear in classical Kirillov theory. We obtain a concrete geometric parametrization of irreducible unitary representations by nonnegative definite coadjoint orbits. As an application, we prove an analytic generalization of the Stone-von Neumann theorem for Heisenberg-Clifford super Lie groups

    Phase diagram and hidden order for generalized spin ladders

    Full text link
    We investigate the phase diagram of antiferromagnetic spin ladders with additional exchange interactions on diagonal bonds by variational and numerical methods. These generalized spin ladders interpolate smoothly between the S=1/2S=1/2 chain with competing nn and nnn interactions, the S=1/2S=1/2 chain with alternating exchange and the antiferromagnetic S=1S=1 chain. The Majumdar-Ghosh ground states are formulated as matrix product states and are shown to exhibit the same type of hidden order as the af S=1S=1 chain. Generalized matrix product states are used for a variational calculation of the ground state energy and the spin and string correlation functions. Numerical (Lanczos) calculations of the energies of the ground state and of the low-lying excited states are performed, and compare reasonably with the variational approach. Our results support the hypothesis that the dimer and Majumdar-Ghosh points are in the same phase as the af S=1S=1 chain.Comment: 23 pages, REVTEX, 7 figure

    Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet

    Full text link
    We have measured the heat capacity and magnetization of the spin one one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic field versus temperature phase diagram. We found a field induced long-range magnetic ordering. We have been successful in explaining the phase diagram theoretically.Comment: 6 pages, 18 figure

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Hidden Orders and RVB Formation of the Four-Leg Heisenberg Ladder Model

    Full text link
    The ground state of the four-chain Heisenberg ladder model is numerically investigated. Hidden-order correlations suitable for the system are introduced and calculated with an emphasis on the spatially isotropic point, where a corresponding material exists. The existence of a long-range hidden correlation indicates formation of a short-range RVB state in the case of the antiferromagnetic inter-chain coupling. A transition between the phase of the ferromagnetic inter-chain coupling and that of the antiferromagnetic one is discussed.Comment: 9 pages, 16 Postscript figure

    Elementary excitations in the gapped phase of a frustrated S=1/2 spin ladder: from spinons to the Haldane triplet

    Full text link
    We use the variational matrix-product ansatz to study elementary excitations in the S=1/2 ladder with additional diagonal coupling, equivalent to a single S=1/2 chain with alternating exchange and next-nearest neighbor interaction. In absence of alternation the elementary excitation consists of two free S=1/2 particles ("spinons") which are solitons in the dimer order. When the nearest-neighbor exchange alternates, the "spinons" are confined into one S=1 excitation being a soliton in the generalized string order. Variational results are found to be in a qualitative agreement with the exact diagonalization data for 24 spins. We argue that such an approach gives a reasonably good description in a wide range of the model parameters.Comment: RevTeX, 13 pages, 11 embedded figures, uses psfig and multico

    Randomness-driven quantum phase transition in bond-alternating Haldane chain

    Full text link
    The effect of bond randomness on the spin-gapped ground state of the spin-1 bond-alternating antiferromagnetic Heisenberg chain is discussed. By using the loop cluster quantum Monte Carlo method, we investigate the stability of topological order in terms of the recently proposed twist order parameter [M. Nakamura and S. Todo: Phys. Rev. Lett. 89 (2002) 077204]. It is observed that the dimer phases as well as the Haldane phase of the spin-1 Heisenberg chain are robust against a weak randomness, though the valence-bond-solid-like topological order in the latter phase is destroyed by introducing a disorder stronger than the critical value.Comment: 4 pages, 5 figures; minor changes; accepted for publication in J. Phys. Soc. Jp
    • …
    corecore