83 research outputs found
Rab4b Is a Small GTPase Involved in the Control of the Glucose Transporter GLUT4 Localization in Adipocyte
Endosomal small GTPases of the Rab family, among them Rab4a, play an essential role in the control of the glucose transporter GLUT4 trafficking, which is essential for insulin-mediated glucose uptake. We found that adipocytes also expressed Rab4b and we observed a consistent decrease in the expression of Rab4b mRNA in human and mice adipose tissue in obese diabetic states. These results led us to study this poorly characterized Rab member and its potential role in glucose transport.We used 3T3-L1 adipocytes to study by imaging approaches the localization of Rab4b and to determine the consequence of its down regulation on glucose uptake and endogenous GLUT4 location. We found that Rab4b was localized in endosomal structures in preadipocytes whereas in adipocytes it was localized in GLUT4 and in VAMP2-positive compartments, and also in endosomal compartments containing the transferrin receptor (TfR). When Rab4b expression was decreased with specific siRNAs by two fold, an extent similar to its decrease in obese diabetic subjects, we observed a small increase (25%) in basal deoxyglucose uptake and a more sustained increase (40%) in presence of submaximal and maximal insulin concentrations. This increase occurred without any change in GLUT4 and GLUT1 expression levels and in the insulin signaling pathways. Concomitantly, GLUT4 but not TfR amounts were increased at the plasma membrane of basal and insulin-stimulated adipocytes. GLUT4 seemed to be targeted towards its non-endosomal sequestration compartment.Taken our results together, we conclude that Rab4b is a new important player in the control of GLUT4 trafficking in adipocytes and speculate that difference in its expression in obese diabetic states could act as a compensatory effect to minimize the glucose transport defect in their adipocytes
First Detection of Two Superoutbursts during Rebrightening Phase of a WZ Sge-type Dwarf Nova: TCP J21040470+4631129
We report photometric and spectroscopic observations and analysis of the 2019
superoutburst of TCP J21040470+4631129. This object showed a 9-mag
superoutburst with early superhumps and ordinary superhumps, which are the
features of WZ Sge-type dwarf novae. Five rebrightenings were observed after
the main superoutburst. The spectra during the post-superoutburst stage showed
the Balmer, He I and possible sodium doublet features. The mass ratio is
derived as 0.0880(9) from the period of the superhump. During the third and
fifth rebrightenings, growing superhumps and superoutbursts were observed,
which have never been detected during a rebrightening phase among WZ Sge-type
dwarf novae with multiple rebrightenings. To induce a superoutburst during the
brightening phase, the accretion disk was needed to expand beyond the 3:1
resonance radius of the system again after the main superoutburst. These
peculiar phenomena can be explained by the enhanced viscosity and large radius
of the disk suggested by the higher luminosity and the presence of late-stage
superhumps during the post-superoutburst stage, plus by more mass supply from
the cool mass reservoir and/or from the secondary because of the enhanced mass
transfer than those of other WZ Sge-type dwarf novae.Comment: 13 pages, 10 figures, accepted for publication in PAS
First detection of two superoutbursts during rebrightening phase of a WZ Sge-type Dwarf Nova : TCP J21040470+4631129
We report on photometric and spectroscopic observations and analysis of the 2019 superoutburst of TCP J21040470+4631129. This object showed a 9 mag superoutburst with early superhumps and ordinary superhumps, which are the features of WZ Sge-type dwarf novae. Five rebrightenings were observed after the main superoutburst. The spectra during the post-superoutburst stage showed Balmer, He I, and possible sodium doublet features. The mass ratio is derived as 0.0880(9) from the period of the superhump. During the third and fifth rebrightenings, growing superhumps and superoutbursts were observed, which have never been detected during a rebrightening phase among WZ Sge-type dwarf novae with multiple rebrightenings. To induce a superoutburst during the brightening phase, the accretion disk needs to have expanded beyond the 3 : 1 resonance radius of the system again after the main superoutburst. These peculiar phenomena can be explained by the enhanced viscosity and large radius of the accretion disk suggested by the higher luminosity and the presence of late-stage superhumps during the post-superoutburst stage, plus by more mass supply from the cool mass reservoir and/or from the secondary because of the enhanced mass transfer than those of other WZ Sge-type dwarf novae.peer-reviewe
A sub-Neptune transiting the young field star HD 18599  at 40 pc
Transiting exoplanets orbiting young nearby stars are ideal laboratories for testing theories of planet formation and evolution. However, to date only a handful of stars with age <1 Gyr have been found to host transiting exoplanets. Here we present the discovery and validation of a sub-Neptune around HD 18599 , a young (300 Myr), nearby (d = 40 pc) K star. We validate the transiting planet candidate as a bona fide planet using data from the TESS , Spitzer , and Gaia  missions, ground-based photometry from IRSF , LCO , PEST , and NGTS , speckle imaging from Gemini, and spectroscopy from CHIRON , NRES , FEROS , and Minerva-Australis . The planet has an orbital period of 4.13 d , and a radius of 2.7 R⊕ . The RV data yields a 3-σ mass upper limit of 30.5 M⊕  which is explained by either a massive companion or the large observed jitter typical for a young star. The brightness of the host star (V∼9 mag) makes it conducive to detailed characterization via Doppler mass measurement which will provide a rare view into the interior structure of young planets
Aberrant expression of RAB1A in human tongue cancer
This study was designed to identify specific gene expression changes in tongue squamous cell carcinomas (TSCCs) compared with normal tissues using in-house cDNA microarray that comprised of 2304 full-length cDNAs from a cDNA library prepared from normal oral tissues, primary oral cancers, and oral cancer cell lines. The genes identified by our microarray system were further analysed at the mRNA or protein expression level in a series of clinical samples by real-time quantitative reverse transcriptase–polymerase chain reaction (qRT–PCR) analysis and imuunohositochemistry. The microarray analysis identified a total of 16 genes that were significantly upregulated in common among four TSCC specimens. Consistent with the results of the microarray, increased mRNA levels of selected genes with known molecular functions were found in the four TSCCs. Among genes identified, Rab1a, a member of the Ras oncogene family, was further analysed for its protein expression in 54 TSCCs and 13 premalignant lesions. We found a high prevalence of Rab1A-overexpression not only in TSCCs (98%) but also in premalignant lesions (93%). Thus, our results suggest that rapid characterisation of the target gene(s) for TSCCs can be accomplished using our in-house cDNA microarray analysis combined with the qRT–PCR and immunohistochemistry, and that the Rab1A is a potential biomarker of tongue carcinogenesis
The Magellan-TESS Survey I: Survey Description and Mid-Survey Results
One of the most significant revelations from Kepler is that roughly one-third
of Sun-like stars host planets which orbit their stars within 100 days and are
between the size of Earth and Neptune. How do these super-Earth and sub-Neptune
planets form, what are they made of, and do they represent a continuous
population or naturally divide into separate groups? Measuring their masses and
thus bulk densities can help address these questions of their origin and
composition. To that end, we began the Magellan-TESS Survey (MTS), which uses
Magellan II/PFS to obtain radial velocity (RV) masses of 30 transiting
exoplanets discovered by TESS and develops an analysis framework that connects
observed planet distributions to underlying populations. In the past, RV
measurements of small planets have been challenging to obtain due to the
faintness and low RV semi-amplitudes of most Kepler systems, and challenging to
interpret due to the potential biases in the existing ensemble of small planet
masses from non-algorithmic decisions for target selection and observation
plans. The MTS attempts to minimize these biases by focusing on bright TESS
targets and employing a quantitative selection function and multi-year
observing strategy. In this paper, we (1) describe the motivation and survey
strategy behind the MTS, (2) present our first catalog of planet mass and
density constraints for 25 TESS Objects of Interest (TOIs; 20 in our population
analysis sample, five that are members of the same systems), and (3) employ a
hierarchical Bayesian model to produce preliminary constraints on the
mass-radius (M-R) relation. We find qualitative agreement with prior
mass-radius relations but some quantitative differences (abridged). The the
results of this work can inform more detailed studies of individual systems and
offer a framework that can be applied to future RV surveys with the goal of
population inferences.Comment: 101 pages (39 of main text and references, the rest an appendix of
figures and tables). Submitted to AAS Journal
An ultrahot Neptune in the Neptune desert
About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)
KELT-24b: A 5M\u3csub\u3eJ\u3c/sub\u3e Planet on a 5.6 day Well-aligned Orbit around the Young V = 8.3 F-star HD 93148
We present the discovery of KELT-24 b, a massive hot Jupiter orbiting a bright (V = 8.3 mag, K = 7.2 mag) young F-star with a period of 5.6 days. The host star, KELT-24 (HD 93148), has a T eff = K, a mass of M * = M ⊙, a radius of R * = 1.506 ± 0.022 R ⊙, and an age of Gyr. Its planetary companion (KELT-24 b) has a radius of R P = 1.272 ± 0.021 R J and a mass of M P = M J, and from Doppler tomographic observations, we find that the planet\u27s orbit is well-aligned to its host star\u27s projected spin axis (). The young age estimated for KELT-24 suggests that it only recently started to evolve from the zero-age main sequence. KELT-24 is the brightest star known to host a transiting giant planet with a period between 5 and 10 days. Although the circularization timescale is much longer than the age of the system, we do not detect a large eccentricity or significant misalignment that is expected from dynamical migration. The brightness of its host star and its moderate surface gravity make KELT-24b an intriguing target for detailed atmospheric characterization through spectroscopic emission measurements since it would bridge the current literature results that have primarily focused on lower mass hot Jupiters and a few brown dwarfs
A sub-Neptune transiting the young field star HD 18599 at 40 pc
Transiting exoplanets orbiting young nearby stars are ideal laboratories for testing theories of planet formation and evolution. However, to date only a handful of stars with age <1 Gyr have been found to host transiting exoplanets. Here we present the discovery and validation of a sub-Neptune around HD 18599 , a young (300 Myr ), nearby (d=40 pc) K star. We validate the transiting planet candidate as a bona fide planet using data from the TESS , Spitzer , and Gaia missions, ground-based photometry from IRSF , LCO , PEST , and NGTS , speckle imaging from Gemini, and spectroscopy from CHIRON , NRES , FEROS , and Minerva-Australis . The planet has an orbital period of 4.13 d , and a radius of 2.7 R⊕ . The RV data yields a 3-σ mass upper limit of 30.5 M⊕ which is explained by either a massive companion or the large observed jitter typical for a young star. The brightness of the host star (V∼9 mag) makes it conducive to detailed characterization via Doppler mass measurement which will provide a rare view into the interior structure of young planets
- …