3,681 research outputs found

    Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier

    Full text link
    In order to describe heavy-ion fusion reactions around the Coulomb barrier with an actinide target nucleus, we propose a model which combines the coupled-channels approach and a fluctuation-dissipation model for dynamical calculations. This model takes into account couplings to the collective states of the interacting nuclei in the penetration of the Coulomb barrier and the subsequent dynamical evolution of a nuclear shape from the contact configuration. In the fluctuation-dissipation model with a Langevin equation, the effect of nuclear orientation at the initial impact on the prolately deformed target nucleus is considered. Fusion-fission, quasi-fission and deep quasi-fission are separated as different Langevin trajectories on the potential energy surface. Using this model, we analyze the experimental data for the mass distribution of fission fragments (MDFF) in the reactions of 34,36^{34,36}S+238^{238}U and 30^{30}Si+238^{238}U at several incident energies around the Coulomb barrier. We find that the time scale in the quasi-fission as well as the deformation of fission fragments at the scission point are different between the 30^{30}Si+238^{238}U and 36^{36}S+238^{238}U systems, causing different mass asymmetries of the quasi-fission.Comment: 11 figure

    Efficient implementation of the nonequilibrium Green function method for electronic transport calculations

    Get PDF
    An efficient implementation of the nonequilibrium Green function (NEGF) method combined with the density functional theory (DFT) using localized pseudo-atomic orbitals (PAOs) is presented for electronic transport calculations of a system connected with two leads under a finite bias voltage. In the implementation, accurate and efficient methods are developed especially for evaluation of the density matrix and treatment of boundaries between the scattering region and the leads. Equilibrium and nonequilibrium contributions in the density matrix are evaluated with very high precision by a contour integration with a continued fraction representation of the Fermi-Dirac function and by a simple quadratureon the real axis with a small imaginary part, respectively. The Hartree potential is computed efficiently by a combination of the two dimensional fast Fourier transform (FFT) and a finite difference method, and the charge density near the boundaries is constructed with a careful treatment to avoid the spurious scattering at the boundaries. The efficiency of the implementation is demonstrated by rapid convergence properties of the density matrix. In addition, as an illustration, our method is applied for zigzag graphene nanoribbons, a Fe/MgO/Fe tunneling junction, and a LaMnO3/_3/SrMnO3_3 superlattice, demonstrating its applicability to a wide variety of systems.Comment: 20 pages, 11 figure

    Electric-field-induced lifting of the valley degeneracy in alpha-(BEDT-TTF)_2I_3 Dirac-like Landau levels

    Full text link
    The relativistic Landau levels in the layered organic material alpha-(BEDT-TTF)_2I_3 [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] are sensitive to the tilt of the Dirac cones, which, as in the case of graphene, determine the low-energy electronic properties under appropriate pressure. We show that an applied inplane electric field, which happens to be in competition with the tilt of the cones, lifts the twofold valley degeneracy due to a different level spacing. The scenario may be tested in infrared transmission spectroscopy.Comment: 4 pages, 1 figure; version with minor corrections published in EP

    High--Energy Photon--Hadron Scattering in Holographic QCD

    Full text link
    This article provides an in-depth look at hadron high energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into non-perturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) "photon" in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (= Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) by using gravity dual models. We begin with refining derivation of Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with non-linear trajectories, and we clarify the relation between Pomeron couplings and Pomeron form factor. We emphasize that the saddle point value j^* of the scattering amplitude in the complex j-plane representation is a very important concept in understanding qualitative behavior of the scattering amplitude. The total Pomeron contribution to the scattering is decomposed into the saddle point contribution and at most a finite number of pole contributions, and when the pole contributions are absent (which we call saddle point phase), kinematical variable (q,x,t) dependence of ln (1/q) evolution and ln(1/x) evolution parameters gamma_eff. and lambda_eff. in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced qualitatively in gravity dual
    corecore