2,691 research outputs found

    The Density Matrix Renormalization Group technique with periodic boundary conditions

    Full text link
    The Density Matrix Renormalization Group (DMRG) method with periodic boundary conditions is introduced for two dimensional classical spin models. It is shown that this method is more suitable for derivation of the properties of infinite 2D systems than the DMRG with open boundary conditions despite the latter describes much better strips of finite width. For calculation at criticality, phenomenological renormalization at finite strips is used together with a criterion for optimum strip width for a given order of approximation. For this width the critical temperature of 2D Ising model is estimated with seven-digit accuracy for not too large order of approximation. Similar precision is reached for critical indices. These results exceed the accuracy of similar calculations for DMRG with open boundary conditions by several orders of magnitude.Comment: REVTeX format contains 8 pages and 6 figures, submitted to Phys. Rev.

    Application of the Density Matrix Renormalization Group Method to a Non-Equilibrium Problem

    Full text link
    We apply the density matrix renormalization group (DMRG) method to a non-equilibrium problem: the asymmetric exclusion process in one dimension. We study the stationary state of the process to calculate the particle density profile (one-point function). We show that, even with a small number of retained bases, the DMRG calculation is in excellent agreement with the exact solution obtained by the matrix-product-ansatz approach.Comment: 8 pages, LaTeX (using jpsj.sty), 4 non-embedded figures, submitted to J. Phys. Soc. Jp

    Incommensurate structures studied by a modified Density Matrix Renormalization Group Method

    Full text link
    A modified density matrix renormalization group (DMRG) method is introduced and applied to classical two-dimensional models: the anisotropic triangular nearest- neighbor Ising (ATNNI) model and the anisotropic triangular next-nearest-neighbor Ising (ANNNI) model. Phase diagrams of both models have complex structures and exhibit incommensurate phases. It was found that the incommensurate phase completely separates the disordered phase from one of the commensurate phases, i. e. the non-existence of the Lifshitz point in phase diagrams of both models was confirmed.Comment: 14 pages, 14 figures included in text, LaTeX2e, submitted to PRB, presented at MECO'24 1999 (Wittenberg, Germany

    Flat-Bands on Partial Line Graphs -- Systematic Method for Generating Flat-Band Lattice Structures

    Full text link
    We introduce a systematic method for constructing a class of lattice structures that we call ``partial line graphs''.In tight-binding models on partial line graphs, energy bands with flat energy dispersions emerge.This method can be applied to two- and three-dimensional systems. We show examples of partial line graphs of square and cubic lattices. The method is useful in providing a guideline for synthesizing materials with flat energy bands, since the tight-binding models on the partial line graphs provide us a large room for modification, maintaining the flat energy dispersions.Comment: 9 pages, 4 figure

    A Density Matrix Algorithm for 3D Classical Models

    Full text link
    We generalize the corner transfer matrix renormalization group, which consists of White's density matrix algorithm and Baxter's method of the corner transfer matrix, to three dimensional (3D) classical models. The renormalization group transformation is obtained through the diagonalization of density matrices for a cubic cluster. A trial application for 3D Ising model with m=2 is shown as the simplest case.Comment: 15 pages, Latex(JPSJ style files are included), 8 ps figures, submitted to J. Phys. Soc. Jpn., some references are correcte

    Phase Transition of the Ising model on a Hyperbolic Lattice

    Full text link
    The matrix product structure is considered on a regular lattice in the hyperbolic plane. The phase transition of the Ising model is observed on the hyperbolic (5,4)(5, 4) lattice by means of the corner-transfer-matrix renormalization group (CTMRG) method. Calculated correlation length is always finite even at the transition temperature, where mean-field like behavior is observed. The entanglement entropy is also always finite.Comment: 4 pages, 3 figure

    Thermodynamic properties of the one-dimensional Kondo insulators studied by the density matrix renormalization group method

    Full text link
    Thermodynamic properties of the one-dimensional Kondo lattice model at half-filling are studied by the density matrix renormalization group method applied to the quantum transfer matrix. Spin susceptibility, charge susceptibility, and specific heat are calculated down to T=0.1t for various exchange constants. The obtained results clearly show crossover behavior from the high temperature regime of nearly independent localized spins and conduction electrons to the low temperature regime where the two degrees of freedom couple strongly. The low temperature energy scales of the charge and spin susceptibilities are determined and shown to be equal to the quasiparticle gap and the spin gap, respectively, for weak exchange couplings.Comment: 4 pages, 3 Postscript figures, REVTeX, submitted to J. Phys. Soc. Jp

    Density Matrix and Renormalization for Classical Lattice Models

    Full text link
    We review the variational principle in the density matrix renormalization group (DMRG) method, which maximizes an approximate partition function within a restricted degrees of freedom; at zero temperature, DMRG mini- mizes the ground state energy. The variational principle is applied to two-dimensional (2D) classical lattice models, where the density matrix is expressed as a product of corner transfer matrices. (CTMs) DMRG related fields and future directions of DMRG are briefly discussed.Comment: 21 pages, Latex, 14 figures in postscript files, Proc. of the 1996 El Escorial Summer School on "Strongly Correlated Magnetic and Superconducting Systems

    On zero modes of the eleven dimensional superstring

    Get PDF
    It is shown that recently pointed out by Berkovits on-shell degrees of freedom of the D=11 superstring do not make contributions into the quantum states spectrum of the theory. As a consequence, the spectrum coincides with that of the D=10 type IIA superstring.Comment: 7 pages, LaTex fil
    • …
    corecore