1,167 research outputs found
One-by-one trap activation in silicon nanowire transistors
Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors
(MOSFETs) has been identified as the main source of noise at low frequency. It
often originates from an ensemble of a huge number of charges trapping and
detrapping. However, a deviation from the well-known model of 1/f noise is
observed for nanoscale MOSFETs and a new model is required. Here, we report the
observation of one-by-one trap activation controlled by the gate voltage in a
nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale
FETs. We demonstrate that the Coulomb repulsion between electronically charged
trap sites avoids the activation of several traps simultaneously. This effect
induces a noise reduction by more than one order of magnitude. It decreases
when increasing the electron density in the channel due to the electrical
screening of traps. These findings are technologically useful for any FETs with
a short and narrow channel.Comment: One file with paper and supplementary informatio
Novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration
Journal ArticlePURPOSE: To identify pathogenic mutations in the guanylate cyclase-activating protein 1 (GCAP1) and GCAP2 genes and to characterize the biochemical effect of mutation on guanylate cyclase (GC) stimulation. METHODS: The GCAP1 and GCAP2 genes were screened by direct sequencing for mutations in 216 patients and 421 patients, respectively, with various hereditary retinal diseases. A mutation in GCAP1 segregating with autosomal dominant cone degeneration was further evaluated biochemically by employing recombinant proteins, immunoblotting, Ca2+-dependent stimulation of GC, fluorescence emission spectra, and limited proteolysis in the absence and presence of Ca2+. RESULTS: A novel GCAP1 mutation, I143NT (substitution of Ile at codon 143 by Asn and Thr), affecting the EF4 Ca2+-binding loop, was identified in a heterozygote father and son with autosomal dominant cone degeneration. Both patients had much greater loss of cone function versus rod function; previous histopathologic evaluation of the father's eyes at autopsy (age 75 years) showed no foveal cones but a few, scattered cones remaining in the peripheral retina. Biochemical analysis showed that the GCAP1-I143NT mutant adopted a conformation susceptible to proteolysis, and the mutant inhibited GC only partially at high Ca2+ concentrations. Individual patients with atypical or recessive retinitis pigmentosa (RP) had additional heterozygous GCAP1-T114I and GCAP2 gene changes (V85M and F150C) of unknown pathogenicity. CONCLUSIONS: A novel GCAP1 mutation, I143NT, caused a form of autosomal dominant cone degeneration that destroys foveal cones by mid-life but spares some cones in the peripheral retina up to 75 years. Properties of the GCAP1-I143NT mutant protein suggested that it is incompletely inactivated by high Ca2+ concentrations as should occur with dark adaptation. The continued activity of the mutant GCAP1 likely results in higher-than-normal scotopic cGMP levels which may, in turn, account for the progressive loss of cones
Metal-insulator transition in one-dimensional lattices with chaotic energy sequences
We study electronic transport through a one-dimensional array of sites by
using a tight binding Hamiltonian, whose site-energies are drawn from a chaotic
sequence. The correlation degree between these energies is controlled by a
parameter regulating the dynamic Lyapunov exponent measuring the degree of
chaos. We observe the effect of chaotic sequences on the localization length,
conductance, conductance distribution and wave function, finding evidence of a
Metal-Insulator Transition (MIT) at a critical degree of chaos. The
one-dimensional metallic phase is characterized by a Gaussian conductance
distribution and exhibits a peculiar non-selfaveraging.Comment: 5 pages, 5 figures (one figure replaced). Includes new results and a
few additional references. Improved style for publication. Accepted in
Physics Letters
Demystifying Event-based Sensor Biasing to Optimize Signal to Noise for Space Domain Awareness
Neuromorphic dynamic vision sensors (DVS), often called event-based sensors (EBS), are a novel class of cameras that have recently shown potential to make a significant impact in the SDA community. Their biologically-inspired design simultaneously achieves high temporal resolution, wide dynamic range, low power consumption and sparse data output, making them an ideal fit for space applications. Although initial results for SDA are promising, they typically exhibit elevated noise rates in dim conditions and have thus far failed to outperform conventional cameras in terms of limiting visual magnitude and sensitivity with high telescope scan rates. A hurdle for widespread adoption is a lack of general guidance regarding optimal camera biases (settings) for SDA. Prior studies either serve as proof of concept or focus on algorithm development; however, to date, none have provided detailed guidance on biasing EBS to optimize signal to noise ratio (SNR) for SDA tasks. The goal of this paper is to narrow the knowledge gap between EBS pixel biasing and resulting performance to optimize their capabilities for SDA. To accomplish this, we adopt a bottom-up approach, revisiting the pixel architecture to consider physics-based performance limitations. In an EBS, each pixel responds autonomously, generating "events" in response to local brightness changes within its field of view (FOV), and outputs a sparse representation of the visual scene where each event is encoded by a pixel address (x,y), a microsecond resolution timestamp (t), and a single bit polarity value (p) indicating either an increase or decrease in brightness by a defined threshold. In most camera models, behavior is fine-tuned by adjusting roughly a half-dozen biases, including threshold levels (sensitivity), bandwidth (speed of the front-end photoreceptor), and refractory period (dead-time between events in a given pixel). These parameters make EBS cameras adaptable for varied applications, but many degrees of freedom presents a challenge for optimization. Researchers unfamiliar with the technology can be overwhelmed by the myriad of biasing options and must either rely on a prescribed set of biases or manually adjust them to achieve desired performance; the latter is not typically recommended for non-experts due to 2nd-order effects such as excessive noise rates. Manufacturer default biases are considered optimized for a broad range of applications, but recent studies have demonstrated non-conventional bias techniques can significantly reduce background noise in dim conditions while still retaining signal, suggesting that SDA capabilities could be improved by a more sophisticated biasing strategy. By conducting a detailed study of how sensitivity, response speed, and noise rates scale with varied bias configurations, we aim to approach an optimal SNR bias configuration and demonstrate the maximal capabilities of current generation COTS EBS cameras for SDA. To systematically analyze and benchmark performance against a calibrated and repeatable stimulus, we developed a custom SDA test-bench to simulate stars/satellites as sub-pixel point source targets of variable speed and brightness. The set-up includes an integrating light box to provide a calibrated flat-field illumination source, a custom 170 mm radius anodized aluminum disk with precision drilled holes of diameters ranging from 100 to 250 microns, and a digitally programmable motor capable of precise speed control from ~0.1 to 800 RPM. The disk is backlit by the flat-field illumination source and connected to the motor shaft, and a 7 x 10 cm region is viewed through a Fujinon 1:1.8/7-70mm CS mount lens at a distance of 50 cm. The FOV and zoom are chosen such that the dimension of the largest holes is still sub-pixel in diameter when in focus. Even with the ability to rapidly collect measurements with this setup, the overall parameter space is still too large to fully explore without any a-priori knowledge about how the sensor responds to signal and noise, and how this depends on biases. As a result, we consider fundamental pixel behaviors to devise an efficient test strategy. We first consider strategies to limit noise rates, as these can overwhelm sensor readout when the background is dark. In prior work, this was presumably accomplished by either reducing the bandwidth biases or increasing threshold biases, but these approaches inherently limit signal. Instead of this naive approach, we draw inspiration from two recent studies: the first demonstrated an optimal balance between two bandwidth related biases accessible in some camera prototypes, and the second relies on a key observation about the statistical distribution of noise events to devise two additional biasing techniques to enhance SNR by allowing either lower thresholds or broader bandwidth settings. Using these techniques as a starting point, we examine the performance the DAVIS346 EBS. We first report baseline performance using manufacturer default biases. To quantify performance, we measure sensitivity (dimmest point source detected) and bandwidth (fastest point source detected). Next, we tune bias settings with specific detection goals (i.e. maximum velocity and/or minimum brightness) and analyze the results. Finally, we apply newly developed low-noise bias techniques and attempt to identify general principles that can be applied universally to any EBS camera to improve performance in SDA tasks. This paper provides a baseline for understanding EBS performance characteristics and will significantly lower the entry barrier for new researchers in the field of event-based SDA. More importantly, it adds insight for optimizing EBS behavior for SDA tasks and demonstrates the absolute performance limits of current generation cameras for detecting calibrated point source targets against a dark background. Finally, this study will enable follow-on work including the development of customized denoising, detection, and tracking algorithms that consider signal response and noise statistics as a function of the selected camera and bias configuration
Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179
The rd1 mouse with a mutation in the Pde6b gene was the first strain of mice identified with a retinal degeneration. However, AAV-mediated gene supplementation of rd1 mice only results in structural preservation of photoreceptors, and restoration of the photoreceptor-mediated a-wave, but not in restoration of the bipolar cell-mediated b-wave. Here we show that a mutation in Gpr179 prevents the full restoration of vision in rd1 mice. Backcrossing rd1 with C57BL6 mice reveals the complete lack of b-wave in a subset of mice, consistent with an autosomal recessive Mendelian inheritance pattern. We identify a mutation in the Gpr179 gene, which encodes for a G-protein coupled receptor localized to the dendrites of ON-bipolar cells. Gene replacement in rd1 mice that are devoid of the mutation in Gpr179 successfully restores the function of both photoreceptors and bipolar cells, which is maintained for up to 13 months. Our discovery may explain the failure of previous gene therapy attempts in rd1 mice, and we propose that Grp179 mutation status should be taken into account in future studies involving rd1 mice
Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains
The harmonic Fibonacci chain, which is one of a quasiperiodic chain
constructed with a recursion relation, has a singular continuous
frequency-spectrum and critical eigenstates. The validity of the Fourier law is
examined for the harmonic Fibonacci chain with stochastic heat baths at both
ends by investigating the system size N dependence of the heat current J and
the local temperature distribution. It is shown that J asymptotically behaves
as (ln N)^{-1} and the local temperature strongly oscillates along the chain.
These results indicate that the Fourier law does not hold on the harmonic
Fibonacci chain. Furthermore the local temperature exhibits two different
distribution according to the generation of the Fibonacci chain, i.e., the
local temperature distribution does not have a definite form in the
thermodynamic limit. The relations between N-dependence of J and the
frequency-spectrum, and between the local temperature and critical eigenstates
are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma
Impurity conduction in phosphorus-doped buried-channel silicon-on-insulator field-effect transistors
We investigate transport in phosphorus-doped buried-channel
metal-oxide-semiconductor field-effect transistors at temperatures between 10
and 295 K. In a range of doping concentration between around 2.1 and 8.7 x 1017
cm-3, we find that a clear peak emerges in the conductance versus gate-voltage
curves at low temperature. In addition, temperature dependence measurements
reveal that the conductance obeys a variable-range-hopping law up to an
unexpectedly high temperature of over 100 K. The symmetric dual-gate
configuration of the silicon-on-insulator we use allows us to fully
characterize the vertical-bias dependence of the conductance. Comparison to
computer simulation of the phosphorus impurity band depth-profile reveals how
the spatial variation of the impurity-band energy determines the hopping
conduction in transistor structures. We conclude that the emergence of the
conductance peak and the high-temperature variable-range hopping originate from
the band bending and its change by the gate bias. Moreover, the peak structure
is found to be strongly related to the density of states (DOS) of the
phosphorus impurity band, suggesting the possibility of performing a novel
spectroscopy for the DOS of phosphorus, the dopant of paramount importance in
Si technology, through transport experiments.Comment: 9 figure
Low-temperature heat transfer in nanowires
The new regime of low-temperature heat transfer in suspended nanowires is
predicted. It takes place when (i) only ``acoustic'' phonon modes of the wire
are thermally populated and (ii) phonons are subject to the effective elastic
scattering. Qualitatively, the main peculiarities of heat transfer originate
due to appearance of the flexural modes with high density of states in the wire
phonon spectrum. They give rise to the temperature dependence of the
wire thermal conductance. The experimental situations where the new regime is
likely to be detected are discussed.Comment: RevTex file, 1 PS figur
Quantum Phonon Optics: Coherent and Squeezed Atomic Displacements
In this paper we investigate coherent and squeezed quantum states of phonons.
The latter allow the possibility of modulating the quantum fluctuations of
atomic displacements below the zero-point quantum noise level of coherent
states. The expectation values and quantum fluctuations of both the atomic
displacement and the lattice amplitude operators are calculated in these
states---in some cases analytically. We also study the possibility of squeezing
quantum noise in the atomic displacement using a polariton-based approach.Comment: 6 pages, RevTe
- …