29 research outputs found

    Does the Regional Myth Still Hold? An Interim Report

    Get PDF
    This paper introduces our ongoing analysis of auto component development data obtained from Nishiguchi's research sponsored by MIT's International Motor Vehicle Program (IMVP). The main results of this paper can be found in the section of Research Results where a regression analysis of auto component development productivity is conducted. There are three major findings: 1. Contrary to the general perception, neither component type nor generally accepted project characteristic governs variations of productivity among auto component projects in our study. 2. Even after correcting for component type and differences in project characteristics, there still remains a strong regional gap in productivity between Japanese and Western samples (North America and Europe). 3. Among Japanese suppliers, a counterintuitive relationship between person hours and unique parts ratio was revealed: There is a tendency that person hours decreases as unique parts ratio increases. This relationship should not occur without continuous accumulation of knowledge on the auto components. Nor is it explained solely by a cross-functional feature of organizations.The International Motor Vehicle Program; INSEAD and its Euro-Asia Centr

    Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy

    Get PDF
    Kinetic IR spectroscopy was used to reveal β-sheet formation and water expulsion in the folding of single-chain monellin (SMN) composed of a five-stranded β-sheet and an α-helix. The time-resolved IR spectra between 100 μs and 10 s were analyzed based on two consecutive intermediates, I1 and I2, appearing within 100 μs and with a time constant of ≈100 ms, respectively. The initial unfolded state showed broad amide I′ corresponded to a fluctuating conformation. In contrast, I1 possessed a feature at 1,636 cm−1 for solvated helix and weak features assignable to turns, demonstrating the rapid formation of helix and turns. I2 possessed a line for solvated helix at 1,637 cm−1 and major and minor lines for β-sheet at 1,625 and 1,680 cm−1, respectively. The splitting of the major and minor lines is smaller than that of the native state, implying an incomplete formation of the β-sheet. Furthermore, both major and minor lines demonstrated a low-frequency shift compared to those of the native state, which was interpreted to be caused by hydration of the C=O group in the β-sheet. Together with the identification of solvated helix, the core domain of I2 was interpreted as being hydrated. Finally, slow conversion of the water-penetrated core of I2 to the dehydrated core of the native state was observed. We propose that both the expulsion of water, hydrogen-bonded to main-chain amides, and the completion of the secondary structure formation contribute to the energetic barrier of the rate-limiting step in SMN folding

    Role of CD10 in the Metastasis of Colorectal Cancer to the Liver.

    Get PDF
    CD10 is a widely expressed endopeptidase that is present in human colorectal cancer (CRC), which shows a high frequency of liver metastasis. CD10 expression in CRC cells is associated with liver metastasis in rodent models, and CD10 expression enhances the phosphorylation of epidermal growth factor (EGF) receptor (EGFR) and extracellular signalregulated kinase (ERK) l/2. Met-enkephalin (MENK), a CD10 substrate, activates its specific receptor δ-opioid receptor (DOR), which is expressed in CRCs. DOR is a partial agonist of ERK1/2, which suppresses EGF-induced phosphorylation of EGFR and ERK1/2. CD10 retains EGF-induced EGFR activation by degrading MENK. Paradoxically, CRCs express MENK at a high frequency. Since MENK suppresses T lymphocytes, CD10-expressing CRCs can escape from T-cell immunity without exhibiting auto-inhibition. CD10 is strongly associated with the metastasis of CRCs to the liver via an immunosuppressive mechanism. Additionally, CD10 may be an excellent serum marker for liver metastasis in patients with CRC and could represent a potential molecular target for antimetastatic treatment in patients with CRC

    胃癌におけるクローディン4標的化によるシスプラチン化学療法感受性の向上

    Get PDF
    Claudins are major tight-junction proteins that mediate cellular polarity and differentiation. The present study investigated whether the 4D3 antibody to the human CLDN4 extracellular domain (that we previously established) is capable of modulating chemotherapeutic sensitivity in gastric cancer (GC). The results of the present study showed that CLDN4 was overexpressed in 137 of the 192 analyzed GC cases, and that CLDN4 expression was retained in tumors of a lower histological grade (more differentiated), and/or those that were caudal-type homeobox protein 2 (CDX2)-positive, but was reduced in more highly undifferentiated, and CDX2-negative GC cases. The study also compared the synergic effects of combining 4D3 with CDDP treatment and knocking down CLDN4 expression in MKN74 and TMK-1 human GC cells. Co-treatment with 4D3 increased anti-tumor effects of CDDP, whereas CLDN4 knockdown did not. In the TMK-1 cells, non-tight junction CLDN4 associated with integrin β1, increasing stem cell-associated proteins via FAK-c-SRC signals. The anti-tumoral effect of CDDP and 4D3 was examined in a nude mouse subcutaneous tumor model. In the two GC cell lines, concurrent treatment with 4D3 and CDDP synergistically inhibited cell proliferation and increased tumor necrosis and apoptosis to a greater degree than CDDP treatment alone. These findings suggest that 4D3 might increase chemotherapeutic sensitivity by evoking structural disintegration of tight-junction CLDN4 expressed in gastric cancer.博士(医学)・甲第713号・令和元年6月26日Copyright: Nishiguchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0 https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Degradation Mechanism of Epoxy Resin Paint Film determined by ESR

    No full text
    corecore