889 research outputs found
Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria
We study the collective dynamics of elongated swimmers in a very thin fluid
layer by devising long, filamentous, non-tumbling bacteria. The strong
confinement induces weak nematic alignment upon collision, which, for large
enough density of cells, gives rise to global nematic order. This homogeneous
but fluctuating phase, observed on the largest experimentally-accessible scale
of millimeters, exhibits the properties predicted by standard models for
flocking such as the Vicsek-style model of polar particles with nematic
alignment: true long-range nematic order and non-trivial giant number
fluctuations.Comment: 6 pages, 4 figures. Supplemental Material: 6 pages, 3 figure
Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains
The harmonic Fibonacci chain, which is one of a quasiperiodic chain
constructed with a recursion relation, has a singular continuous
frequency-spectrum and critical eigenstates. The validity of the Fourier law is
examined for the harmonic Fibonacci chain with stochastic heat baths at both
ends by investigating the system size N dependence of the heat current J and
the local temperature distribution. It is shown that J asymptotically behaves
as (ln N)^{-1} and the local temperature strongly oscillates along the chain.
These results indicate that the Fourier law does not hold on the harmonic
Fibonacci chain. Furthermore the local temperature exhibits two different
distribution according to the generation of the Fibonacci chain, i.e., the
local temperature distribution does not have a definite form in the
thermodynamic limit. The relations between N-dependence of J and the
frequency-spectrum, and between the local temperature and critical eigenstates
are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma
Development and property study of the extremely thin 12 \texorpdfstring{} C-type straw tubes with 5-mm diameter for a Straw Tracker System of COMET
The COMET experiment focuses on searching for the direct conversion of a muon
into an electron with aluminum nuclei without emitting a neutrino (so-called
conversion). This conversion violates charged lepton flavor
conservation law, a fundamental principle in the Standard Model. The COMET
experiment requirement is to achieve the muon-to-electron conversation
sensitivity on a level of . The Straw Tracker System (STS) based on
straw tubes could provide the necessary spatial resolution of 150 m and
the electron momentum resolution better than 200 keV/c.
The COMET experiment will be separated into two phases. Phase-I will operate
with the 3.2 kW 8-GeV-proton beam, and Phase-II will operate with beam
intensity increased to 56 kW. STS must operate in a vacuum with 1 bar internal
pressure applied to straws. The initial design of 10-mm-diameter straws
developed for phase-I will not be as efficient with the 20 times increased beam
intensity of Phase II, but the new STS design based on 5-mm-diameter 12-m
thick straws could fully satisfy the required efficiency. The mechanical
properties of these straws, such as sagging, elongation, dependence of the
diameter on over-pressure, etc, are discussed in this article
Phonon dispersion and electron-phonon interaction in peanut-shaped fullerene polymers
We reveal that the periodic radius modulation peculiar to one-dimensional
(1D) peanut-shaped fullerene (C) polymers exerts a strong influence on
their low-frequency phonon states and their interactions with mobile electrons.
The continuum approximation is employed to show the zone-folding of phonon
dispersion curves, which leads to fast relaxation of a radial breathing mode in
the 1D C polymers. We also formulate the electron-phonon interaction
along the deformation potential theory, demonstrating that only a few set of
electron and phonon modes yields a significant magnitude of the interaction
relevant to the low-temperature physics of the system. The latter finding gives
an important implication for the possible Peierls instability of the C
polymers suggested in the earlier experiment.Comment: 9 pages, 8 figure
Design and fabrication of densely integrated silicon quantum dots using a VLSI compatible hydrogen silsesquioxane electron beam lithography process
Hydrogen silsesquioxane (HSQ) is a high resolution negative-tone electron beam resist allowing for direct transfer of nanostructures into silicon-on-insulator. Using this resist for electron beam lithography, we fabricate high density lithographically defined Silicon double quantum dot (QD) transistors. We show that our approach is compatible with very large scale integration, allowing for parallel fabrication of up to 144 scalable devices. HSQ process optimisation allowed for realisation of reproducible QD dimensions of 50 nm and tunnel junction down to 25 nm. We observed that 80% of the fabricated devices had dimensional variations of less than 5 nm. These are the smallest high density double QD transistors achieved to date. Single electron simulations combined with preliminary electrical characterisations justify the reliability of our device and process
Impact of van der Waals forces on the classical shuttle instability
The effects of including the van der Waals interaction in the modelling of
the single electron shuttle have been investigated numerically. It is
demonstrated that the relative strength of the vdW-forces and the elastic
restoring forces determine the characteristics of the shuttle instability. In
the case of weak elastic forces and low voltages the grain is trapped close to
one lead, and this trapping can be overcome by Coulomb forces by applying a
bias voltage larger than a threshold voltage . This allows for
grain motion leading to an increase in current by several orders of magnitude
above the transition voltage . Associated with the process is also
hysteresis in the I-V characteristics.Comment: minor revisions, updated references, Article published in Phys. Rev.
B 69, 035309 (2004
Effect of phonon scattering by surface roughness on the universal thermal conductance
The effect of phonon scattering by surface roughness on the thermal
conductance in mesoscopic systems at low temperatures is calculated using full
elasticity theory. The low frequency behavior of the scattering shows novel
power law dependences arising from the unusual properties of the elastic modes.
This leads to new predictions for the low temperature depression of the thermal
conductance below the ideal universal value. Comparison with the data of Schwab
et al. [Nature 404, 974 (2000)] suggests that surface roughness on a scale of
the width of the thermal pathway is important in the experiment.Comment: 6 pages, 3 figure
- …