708 research outputs found

    Accuracy and range of validity of the Wigner surmise for mixed symmetry classes in random matrix theory

    Full text link
    Schierenberg et al. [Phys. Rev. E 85, 061130 (2012)] recently applied the Wigner surmise, i.e., substitution of \infty \times \infty matrices by their 2 \times 2 counterparts for the computation of level spacing distributions, to random matrix ensembles in transition between two universality classes. I examine the accuracy and the range of validity of the surmise for the crossover between the Gaussian orthogonal and unitary ensembles by contrasting them with the large-N results that I evaluated using the Nystrom-type method for the Fredholm determinant. The surmised expression at the best-fitting parameter provides a good approximation for 0 \lesssim s \lesssim 2, i.e., the validity range of the original surmise.Comment: 3 pages in REVTeX, 10 figures. (v2) Title changed, version to appear in Phys. Rev.

    Tracy-Widom distribution as instanton sum of 2D IIA superstrings

    Full text link
    We present an analytic expression of the nonperturbative free energy of a double-well supersymmetric matrix model in its double scaling limit, which corresponds to two-dimensional type IIA superstring theory on a nontrivial Ramond-Ramond background. To this end we draw upon the wisdom of random matrix theory developed by Tracy and Widom, which expresses the largest eigenvalue distribution of unitary ensembles in terms of a Painleve II transcendent. Regularity of the result at any value of the string coupling constant shows that the third-order phase transition between a supersymmetry-preserving phase and a supersymmetry-broken phase, previously found at the planar level, becomes a smooth crossover in the double scaling limit. Accordingly, the supersymmetry is always broken spontaneously as its order parameter stays nonzero for the whole region of the coupling constant. Coincidence of the result with the unitary one-matrix model suggests that one-dimensional type 0 string theories partially correspond to the type IIA superstring theory. Our formulation naturally allows for introduction of an instanton chemical potential, and reveals the presence of a novel phase transition, possibly interpreted as condensation of instantons.Comment: 25 pages, 4 figures. v2: new subsection 4.3 and references added. version to be published in JHE
    • …
    corecore