2 research outputs found

    Effect of surgical experience and spine subspecialty on the reliability of the {AO} Spine Upper Cervical Injury Classification System

    Get PDF
    OBJECTIVE The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience (< 5 years, 5–10 years, 10–20 years, and > 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson’s chi-square or Fisher’s exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS The intraobserver reproducibility was substantial for surgeon experience level (< 5 years: 0.74 vs 5–10 years: 0.69 vs 10–20 years: 0.69 vs > 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 (< 5 years: 0.67 vs 5–10 years: 0.62 vs 10–20 years: 0.61 vs > 20 years: 0.62), and only surgeons with > 20 years of experience did not have substantial reliability on assessment 2 (< 5 years: 0.62 vs 5–10 years: 0.61 vs 10–20 years: 0.61 vs > 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system

    A Hybrid 3D-2D Image Registration Framework for Pedicle Screw Trajectory Registration between Intraoperative X-ray Image and Preoperative CT Image

    No full text
    Pedicle screw insertion is considered a complex surgery among Orthopaedics surgeons. Exclusively to prevent postoperative complications associated with pedicle screw insertion, various types of image intensity registration-based navigation systems have been developed. These systems are computation-intensive, have a small capture range and have local maxima issues. On the other hand, deep learning-based techniques lack registration generalizability and have data dependency. To overcome these limitations, a patient-specific hybrid 3D-2D registration principled framework was designed to map a pedicle screw trajectory between intraoperative X-ray image and preoperative CT image. An anatomical landmark-based 3D-2D Iterative Control Point (ICP) registration was performed to register a pedicular marker pose between the X-ray images and axial preoperative CT images. The registration framework was clinically validated by generating projection images possessing an optimal match with intraoperative X-ray images at the corresponding control point registration. The effectiveness of the registered trajectory was evaluated in terms of displacement and directional errors after reprojecting its position on 2D radiographic planes. The mean Euclidean distances for the Head and Tail end of the reprojected trajectory from the actual trajectory in the AP and lateral planes were shown to be 0.6–0.8 mm and 0.5–1.6 mm, respectively. Similarly, the corresponding mean directional errors were found to be 4.90 and 20. The mean trajectory length difference between the actual and registered trajectory was shown to be 2.67 mm. The approximate time required in the intraoperative environment to axially map the marker position for a single vertebra was found to be 3 min. Utilizing the markerless registration techniques, the designed framework functions like a screw navigation tool, and assures the quality of surgery being performed by limiting the need of postoperative CT
    corecore