6 research outputs found

    3D Printed carbon fibre reinforced polyamides in high temperature Poliamida diperkuat gentian karbon cetakan 3D pada suhu tinggi

    Get PDF
    In additive manufacturing, polymer composites are often produced by using fuse deposition modeling (FDM) methods which usually have a clear effect on layer by layer due to incomplete bonding once it is been printed. FDM is one of the widely used 3D printing technology due to its fast printing speed and affordable cost. The mechanical characteristics of composite printed using the FDM technology are affected by the printing parameters of the FDM machine. The mechanical and tensile characteristics of polymer printed using FDM technology are also affected when it is exposed to high temperature. Therefore, this study is to identify the effect of high temperature towards the mechanical performance and tensile characteristics of FDM printed with 2 different printing temperature . A total of 18 samples with 2 different printing temperatures, are tested through a tensile test at temperature of 190°C, 200°C, and 210°C, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA)

    Prestasi bahan polimer komposit dicetak menggunakan pemodelan pemendapan bersatu : suatu ulasan ringkas

    Get PDF
    Penambahan kandungan pengisi polimer komposit dapat meningkatkan kekonduksian elektrik dan terma yang baik, serta mempunyai kekuatan tegangan dan modulus yang tinggi telah memperluaskan aplikasi dalam industri peranti elektronik. Walau bagaimanapun, penambahan kandungan pengisi yang kurang daripada 20 bt.% akan mengakibatkan ketidaksempurnaan dalam penyebaran serta terdapat gumpalan pengisi ke dalam komposit. Ulasan kajian ini adalah untuk mengenal pasti pengaruh penambahan kandungan pengisi bagi bahan konduktif polimer komposit menggunakan percetakan 3D terhadap sifat elektrik, terma dan mekanikal. Ulasan ini merangkumi penggunaan bahan konduktif polimer komposit yang dibentuk melalui kaedah Pemodelan Pemendapan Bersatu (FDM) yang merupakan salah satu daripada percetakan 3D. Proses percetakan 3D yang dilapisi oleh lapisan demi lapisan akan menghasilkan struktur objek yang kompleks serta proses pembuatan yang cepat telah memberi sumbangan kepada penghasilan konduktif polimer komposit. Kekonduksian elektrik dapat ditingkatkan dengan penambahan kandungan pengisi sehingga 50 bt.%. Selain itu, penambahan kandungan pengisi yang dapat menawarkan permukaan yang lebih berkesan antara permukaan pengisi dan matriks telah meningkatkan suhu penghabluran (Tc) dan suhu puncak penghabluran (Tp) dalam sifat terma serta nilai kekuatan tegangan dan modulus dalam sifat mekanik. Penambahan kandungan pengisi polimer komposit sehingga 50 bt.% dapat meningkatkan kesesuaian bahan untuk digunakan pada peranti elektronik

    Simulation analysis of graphene addition on polymeric composite

    Get PDF
    Natural fibres in composite materials, such as kenaf fibres, are used to reinforce polypropylene (PP) due to their light weight and high mechanical performance required in various applications, such as automotive. Although natural fibres seem to be the most promising material, manufacturing parameters and material composition are crucial to determining balanced output performance. Therefore, this study provides essential knowledge on defining the parameters and the effect of addition of graphene content to kenaf fibres composites using computer simulation via Abaqus CAE software. Detailed analyses were compared with the experimental data of Young’s modulus and tensile strength. General static and dynamic explicit analyses were conducted using Abaqus CAE simulations, and set at 40 wt. % kenaf fibres, 0, 1, 3, and 5 wt. % graphene. Short kenaf fibres were utilised together with graphene nanoplatelets and prepared using a hot-pressing technique with the temperature set at 190 °C and pressure of 5 MPa for 5 min. The findings indicated that the simulation and experimental data from previous studies data congruent which is Young’s modulus and tensile strength increased with addition of graphene content. Thus, the simulated data could predict the experimental mechanical performance, in which 24 MPa of tensile strength was recorded for 3 wt. % of graphene additions

    Rheological test of flowability and diffusion behavior of carbon fibre reinforced polyamide

    Get PDF
    Various materials have been produced to be used as feeder material in 3D printing application to obtain the level of mechanical properties and physical properties of a product. Before to its usage as a 3D printing feed material, polyamide-reinforced carbon fibre composites were investigated for flowability and diffusion behaviour. Using a heated nozzle to transform polymer filament into a semi-liquid that is extruded to create a structure layer-by-layer, the primary issue to prevent is delamination. For the success of this study, there are 2 main methods, namely to study the physical properties of carbon fibre reinforced polyamide composites against the composition of 20 wt.% carbon fibre and to study the temperature and rheological load on the rheological properties. Rheological test analysis found that the material flowability of 20 wt.% CF/PA at temperature parameters 210 °C, 230 °C and 250 °C against rheological loads (40, 60, 80) N recorded a range of viscosity values between 48.80 Pa.s to 97.88 Pa.s and shear rate value range between 19700 s-1 to 20270 s-1. Parameter optimization analysis using Taguchi method found that the largest factor contributing to the viscosity of CF/PA composite feed material was the addition of load applied. Moreover, the microstructural results of CF/PA composites show that smoother surfaces and good polymer structural bonding occur at an extrusion temperature of 250 °C. As a result, the rheology-derived flow rate may be used to tackle the problem of delamination and layer separation in 3D printin

    Reinforced composite as a feeder for 3D printing application

    Get PDF
    Kenaf fibre has a low environmental impact because it is recyclable, light density and strong to be used as a product. Natural fibres, especially kenaf fibre, are undertilised and understudied in 3D printing technology. 3D technology is gaining traction to replace traditional methods because it saves cost and production time. This study focuses on producing kenaf composite materials that can be used as a feeder for 3D printing. This study used different fibre compositions (20,25,30) % mixed with polypropylene set at 190 ËšC temperature, 45 rpm speed, and 25 minutes. The material was left to cool to form clot to go through for the rheology process, and injection analysis was performed using Autodesk Moldflow Insight 2014. This study showed that a mixing temperature of 190 ËšC was suitable for forming a high shear mechanism. Kenaf fibre was treated in an alkaline solution of NaOH to 3 hours to prevent damage to the surface of the filler fibre in composites. Kenaf fibre at 6% of NaOH solution reaches a higher value for mechanical strength and roughness, resulting in better mechanical interlocking between the fibres and the matrix. In addition, analysis from Autodesk Moldflow Insight 2014 reveals that at 200 ËšC injection temperature pretend, the shear rate is higher creating smoother melt flow characteristics

    Shear test characterization of 3d printed polyamide reinforced carbon fiber composites

    Get PDF
    The issue of delamination occurring on PACF materials is a structural application failure due to poor mechanical strength. The bonding process of composite materials between layers using fused deposition modeling (FDM) printing affects the tensile strength of the material. The main objective of this study was to study the shear strength of polyamide reinforced carbon composite (PACF) materials by using shear test method and to study the effect of fractured or delamination surfaces during shear testing. In this study, PACF material was printed using FDM technique through Ultimate S3 machine. A total of 20 printed PACF specimens underwent a semi-overlapping adhesion process using Loctite E-20HP epoxy adhesive which required curing for 24 hours at room temperature. Shear test methods were performed on PACF composite specimens using Universal Testing Machine. Furthermore, PACF samples were conducted experiments to determine the physical properties of the composites of the material as well as Scanning Electron Microscopy (SEM) experiments through fractured or eliminated surfaces. Based on the results obtained, the PACF material has a high shear tensile strength compared to that of epoxy adhesives with an average rate of 1.6 MPa respectively. This is may due to the low curing temperature and the thick epoxy layer. It was observed that the FDM printing method produces a porous print layer that can facilitate delamination to occur
    corecore