1,517 research outputs found

    Relating leptogenesis parameters to light neutrino masses

    Get PDF
    We obtain model independent relations among neutrino masses and leptogenesis parameters. We find exact relations that involve the CP asymmetries ϵNα\epsilon_{N_\alpha}, the washout parameters m~α\tilde m_\alpha and θαβ\theta_{\alpha\beta}, and the neutrino masses mim_i and MαM_\alpha, as well as powerful inequalities that involve just m~α\tilde m_\alpha and mim_i. We prove that the Yukawa interactions of at least two of the heavy singlet neutrinos are in the strong washout region (m~α≫10−3eV\tilde m_\alpha\gg10^{-3} eV).Comment: 5 pages, 1 figur

    Similarity classes of 3x3 matrices over a local principal ideal ring

    Full text link
    In this paper similarity classes of three by three matrices over a local principal ideal commutative ring are analyzed. When the residue field is finite, a generating function for the number of similarity classes for all finite quotients of the ring is computed explicitly.Comment: 14 pages, final version, to appear in Communications in Algebr

    Baryogenesis from the Kobayashi-Maskawa Phase

    Full text link
    The Standard Model fulfills the three Sakharov conditions for baryogenesis. The smallness of quark masses suppresses, however, the CP violation from the Kobayashi-Maskawa phase to a level that is many orders of magnitude below what is required to explain the observed baryon asymmetry. We point out that if, as a result of time variation in the Yukawa couplings, quark masses were large at the time of the electroweak phase transition, then the Kobayashi-Maskawa mechanism could be the source of the asymmetry. The Froggatt-Nielsen mechanism provides a plausible framework where the Yukawa couplings could all be of order one at that time, and settle to their present values before nucleosynthesis. The problems related to a strong first order electroweak phase transition may also be alleviated in this framework. Our scenario reveals a loophole in the commonly held view that the Kobayashi-Maskawa mechanism cannot be the dominant source of CP violation to play a role in baryogenesis.Comment: 4 page

    Flavour Issues in Leptogenesis

    Full text link
    We study the impact of flavour in thermal leptogenesis, including the quantum oscillations of the asymmetries in lepton flavour space. In the Boltzmann equations we find different numerical factors and additional terms which can affect the results significantly. The upper bound on the CP asymmetry in a specific flavour is weaker than the bound on the sum. This suggests that -- when flavour dynamics is included -- there is no model-independent limit on the light neutrino mass scale,and that the lower bound on the reheat temperature is relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation

    CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis

    Full text link
    We obtain the Boltzmann equations for leptogenesis including decay and scattering processes with two and three body initial or final states. We present an explicit computation of the CP violating scattering asymmetries. We analyze their possible impact in leptogenesis, and we discuss the validity of their approximate expressions in terms of the decay asymmetry. In scenarios in which the initial heavy neutrino density vanishes, the inclusion of CP asymmetries in scatterings can enforce a cancellation between the lepton asymmetry generated at early times and the asymmetry produced at later times. We argue that a sizeable amount of washout is crucial for spoiling this cancellation, and we show that in the regimes in which the washouts are particularly weak, the inclusion of CP violation in scatterings yields a reduction in the final value of the lepton asymmetry. In the strong washout regimes the inclusion of CP violation in scatterings still leads to a significant enhancement of the lepton asymmetry at high temperatures; however, due to the independence from the early conditions that is characteristic of these regimes, the final value of the lepton asymmetry remains approximately unchanged.Comment: 24 pages, 6 figures. One appendix added. Some numerical results and corresponding figures (mainly fig. 3) corrected. Final version to be published in JHE

    A Hexagonal Theory of Flavor

    Get PDF
    We construct a supersymmetric theory of flavor based on the discrete gauge group (D_6)^2, where D_6 describes the symmetry of a regular hexagon under proper rotations in three dimensions. The representation structure of the group allows one to distinguish the third from the lighter two generations of matter fields, so that in the symmetry limit only the top quark Yukawa coupling is allowed and scalar superpartners of the first two generations are degenerate. Light fermion Yukawa couplings arise from a sequential breaking of the flavor symmetry, and supersymmetric flavor-changing processes remain adequately suppressed. We contrast our model with others based on non-Abelian discrete gauge symmetries described in the literature, and discuss the challenges in constructing more minimal flavor models based on this approach.Comment: 19 pages, ReVTeX, 1 eps figur

    The importance of flavor in leptogenesis

    Full text link
    We study leptogenesis from the out-of-equilibrium decays of the lightest heavy neutrino N1N_1 in the medium (low) temperature regime, T\lsim 10^{12} GeV (101010^{10} GeV), where the rates of processes mediated by the τ\tau (and μ\mu) Yukawa coupling are non negligible, implying that the effects of lepton flavors must be taken into account. We find important quantitative and qualitative differences with respect to the case where flavor effects are ignored: (i) The cosmic baryon asymmetry can be enhanced by up to one order of magnitude; (ii) The sign of the asymmetry can be opposite to what one would predict from the sign of the total lepton asymmetry ϵ1\epsilon_1; (iii) Successful leptogenesis is possible even with ϵ1=0\epsilon_1=0.Comment: 27 pages, 2 figures. Added 3 reference

    Dynamical supersymmetry breaking in a superstring inspired model

    Get PDF
    We present a dilaton dominated scenario for supersymmetry breaking in a recently constructed realistic superstring inspired model with an anomalous U(1) symmetry. Supersymmetry is broken via gaugino condensation due to a confining SU(Nc) gauge group in the hidden sector. In particular, we find that by imposing on the model the phenomenological constraint of the absence of observed flavor changing neutral currents, there is a range of parameters related to the hidden sector and the Kahler potential for which we obtain a low energy spectrum consistent with present experimental bounds. As an illustrative example, we derive the low energy spectrum of a specific model. We find that the LSP is the lightest neutralino with a mass of 53 GeV and the lightest Higgs has a mass of 104 GeV.Comment: 13 page
    • …
    corecore