4 research outputs found

    Effect of high-frequency tapping system on latex yield, tapping panel dryness, and biochemistry of young hillside tapping rubber

    Get PDF
    The objective of this study was to examine the effect of high-frequency tapping system (1/3S 3d/4) on latex yield, biochemistry and its impact on the Tapping Panel Dryness (TPD) of young RRIM600 hillside tapping rubber. The experiment was conducted at three different hillside rubber plantations (NM 1 - 3) at Na-Mom district, Song Khla province, Thailand. Eight-year-old rubber RRIM 600 clones was used in the experiment starting from 2008 until 2009. The rubber trees were investigated for latex yield production, bark consumption, and TPD. In addition, latex diagnosis (sucrose, inorganic phosphorus (Pi), and thiol levels) was measured. The results demonstrated that high-frequency tapping system positively affected the rubber latex yield formation. However, site-specific condition of rubber plantation altered latex yield production. NM 3 provided the highest latex yield (fresh and dry weight) as compared to other plantations. Tapping frequency was highly correlated to latex yield (fresh and dry weights) in all investigated rubber plantations (R2 > 0.75). Using high-frequency tapping system increased bark consumption and stimulated TPD. Moreover, results of latex diagnosis (sucrose, Pi, and thiol levels) showed relatively unhealthy rubber tree as impacted by high-frequency tapping system. Therefore, the farmer should consider it for better decision-making for tapping system application

    Is coconut coir dust an efficient biofertilizer carrier for promoting coffee seedling growth and nutrient uptake?

    No full text
    Background As a method for sustainable agriculture, biofertilizers containing plant growth-promoting bacteria (PGPB) have been recommended as an alternative to chemical fertilizers. However, the short shelf-life of inoculants remains a limiting factor in the development of biofertilizer technology. The present study aimed to (i) evaluate the effectiveness of four different carriers (perlite, vermiculite, diatomite and coconut coir dust) on the shelf-life of S2-4a1 and R2-3b1 isolates over 60 days after inoculation and (ii) evaluate isolated bacteria as growth-promoting agents for coffee seedlings. Methods The rhizosphere soil-isolated S2-4a1 and plant-tissue-isolated R2-3b1 were chosen based on their P and K-solubilizing capacities and their ability to produce IAA. To evaluate the alternative carriers, two selected isolates were inoculated with the four different carriers and incubated at 25 °C for 60 days. The bacterial survival, pH, and EC in each carrier were investigated. In addition, coconut coir dust inoculated with the selected isolates was applied to the soil in pots planted with coffee (Coffea arabica). At 90 days following application, variables such as biomass and total N, P, K, Ca, and Mg uptakes of coffee seedlings were examined. Results The results showed that after 60 days of inoculation at 25 °C, the population of S2-4a1 and R2-3b1 in coconut coir dust carriers was 1.3 and 2.15 × 108 CFU g−1, respectively. However, there were no significant differences among carriers (P > 0.05). The results of the present study suggested that coconut coir dust can be used as an alternative carrier for S2-4a1 and R2-3b1 isolates. The significant differences in pH and EC were observed by different carriers (P < 0.01) after inoculation with both bacterial isolates. However, pH and EC declined significantly only with coconut coir dust during the incubation period. In addition, coconut coir dust-based bioformulations of both S2-4a1 and R2-3b1 enhanced plant growth and nutrient uptake (P, K, Ca, Mg), providing evidence that isolated bacteria possess additional growth-promoting properties

    Development of near-infrared spectroscopy (NIRS) for estimating organic matter, total carbon, and total nitrogen in agricultural soil

    No full text
    The analysis of soil organic matter (OM), total carbon (TC), and total nitrogen (TN) using traditional methods is quite time-consuming and involves the use of hazardous chemical reagents. Absorbance spectroscopy, especially near-infrared (NIR), is becoming more popular for soil analysis. This method requires little sample preparation, no chemicals, and a single spectral analysis to evaluate soil properties. Thus, this research aimed to develop an NIR spectroscopy method for the analysis of OM, TC, and TN in agricultural soils. These findings can provide a good concept of using PLS regression with NIR techniques. The method is as follows: • Topsoil (0–20 cm) samples were collected from various agricultural fields. OM, TC, and TN were analyzed using traditional methods and NIR spectroscopy. • NIR spectra were obtained using an FT-NIR spectrometer, original spectral including with Savitzky–Golay smoothing, standard normal variate (SNV) and multiplicative scatter correction (MSC) preprocessing method were used to create a predicted model through Partial Least Squares (PLS) regression with 65 % calibration, and the rest 35 % for validation. • The results showed significant relationships between measured soil properties (SOM and TC) and NIR absorbance spectra in agricultural soil (R2 of calibration and validation higher than 0.80)

    Dynamics of soil nitrogen availability following conversion of natural forests to various coffee cropping systems in northern Thailand

    No full text
    Land conversion critically affects soil physiochemical and biological properties, yet very little remains clear about the impact of forest conversion on the N pool and related microbial N transformations. Therefore, this study aimed to examine the dynamics of soil N availability following forest conversion into the different coffee cropping systems, and explore the mechanisms behind these dynamics from the microbial N transformation. Disturbed soil samples from two depths (0–20 and 20–40 cm) were collected from four land uses consisting of three different coffee cropping systems (coffee monocultures (C), coffee agroforestry (FC), coffee associated with persimmon (Diospyros kaki L.) (CH)) converted from natural forest and adjacent natural forest (F) in northern Thailand. The soil labile N pools (including ammonium (NH4+), nitrate (NO3−), inorganic N (IN), dissolved organic N (DON) contents and microbial biomass N (MBN)) were measured, as well as the soil total N (STN) content. Soil N transformation rates, including net N mineralization, nitrification, and immobilization, were determined using a laboratory incubation experiment. The results showed that the forest conversion to coffee agroforestry significantly increased soil N content by 39.83 % in topsoil, but no significant difference was observed in C and CH soils as compared to F soil (p ≤ 0.05). The three labile N forms (NH4+, NO3− and DON content) were significantly higher under the C, FC and CH soils in both depths, while the coffee monoculture decreased the MBN content. The increases in soil IN, IN/DON and NO3−/NH4+ ratios used as an N availability indicator were positively associated with an increase in the N mineralization and nitrification processes following the forest conversion. Interestingly, the N immobilization processes in the F and FC soils were significantly higher than those in the C and CH soils, which indirectly regulated a decreased nitrification rate in F and FC soils in our study. With the exception of the FC soil, the nitrification/N immobilization ratios in the C (4.95) and CH (4.08) soils were higher than those in the F (0.70) soil, indicating an increased N loss risk after forest conversion. Therefore, coffee agroforestry systems have the potential to be effective management strategies for improving soil nitrogen sequestration following forest conversion
    corecore