2 research outputs found

    Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations

    Full text link
    During the last two years, tremendous progress in global data-driven weather models trained on numerical weather prediction (NWP) re-analysis data has been made. The most recent models trained on the ERA5 at 0.25{\deg} resolution demonstrate forecast quality on par with ECMWF's high-resolution model with respect to a wide selection of verification metrics. In this study, one of these models, the Pangu-Weather, is compared to several NWP models with and without probabilistic post-processing for 2-meter temperature and 10-meter wind speed forecasting at 183 Norwegian SYNOP stations up to +60 hours ahead. The NWP models included are the ECMWF HRES, ECMWF ENS and the Harmonie-AROME ensemble model MEPS with 2.5 km spatial resolution. Results show that the performances of the global models are on the same level with Pangu-Weather being slightly better than the ECMWF models for temperature and slightly worse for wind speed. The MEPS model clearly provided the best forecasts for both parameters. The post-processing improved the forecast quality considerably for all models, but to a larger extent for the coarse-resolution global models due to stronger systematic deficiencies in these. Apart from this, the main characteristics in the scores were more or less the same with and without post-processing. Our results thus confirm the conclusions from other studies that global data-driven models are promising for operational weather forecasting.Comment: 9 pages, 5 figure

    A component-based probabilistic weather forecasting system for operational usage

    No full text
    This dissertation presents a probabilistic weather prediction system for operational (real-time) usage. The proposed system provides complete probability distributions for both continuous weather variables, such as temperature, and mixed discrete-continuous variables like precipitation accumulations. The proposed system decomposes the process of generating probabilistic forecasts into a series of sequential steps, each of which is important in the overall goal of providing probabilistic forecasts of high quality. Starting with an ensemble of input predictors generated by numerical weather prediction models, the system uses the following four components: 1) correction; 2) uncertainty modeling; 3) calibration; and 4) updating. The correction component bias-corrects the input predictors. The uncertainty model converts these predictors into a suitable probability distribution. The calibration component improves this distribution by removing any distributional bias. The update component further improves the forecast by incorporating recently made observations of the true state. The system is designed to be modular. Namely, different implementations of each component can be used interchangeably with any combination of implementations for the other components. This allows future research into probabilistic forecasting to be focused on any one component and also allows new methods to be easily incorporated into the system. The system uses a number of existing correction and uncertainty models, but the dissertation also presents two new methods: Firstly, a new method for calibrating probabilistic forecasts is created. This method is shown to improve probabilistic forecasts that exhibit distributional bias. Secondly, a new method for incorporating recently made observations to existing probabilistic forecasts is developed. The system and its components are tested using meteorological data from daily operational runs of ensemble numerical weather prediction models and their verifying observations from surface weather stations in North America. Each component's contribution to overall forecast quality is analysed.Science, Faculty ofEarth, Ocean and Atmospheric Sciences, Department ofGraduat
    corecore