2 research outputs found

    Dynamics of bacterial blight disease in resistant and susceptible rice varieties

    Get PDF
    Bacterial blight (X. oryzae pv. oryzae) is a serious disease in rice across the world. To better control the disease, it is important to understand its epidemiology and how key aspects of this (e.g. infection efficiency, and spatial spread) change according to environment (e.g. local site conditions and season), management, and in particular, variety resistance. To explore this, we analysed data on the disease progress on resistant and susceptible varieties of rice grown at four sites in the Philippines across five seasons using a combination of mechanistic modelling and statistical analysis. Disease incidence was generally lower in the resistant variety. However, we found no evidence that the primary infection efficiency was lower in resistant varieties, suggesting that differences were largely due to reduced secondary spread. Despite secondary spread being attributed to splash dispersal which is exacerbated by wind and rain, the wetter sites of Pila and Victoria in south Luzon tended to have lower infection rates than the drier sites in central Luzon. Likewise, we found spread in the dry season can be substantial and should therefore not be ignored. In fact, we found site to be a greater determinant of the number of infection attempts suggesting that other environmental and management factors had greater effect on the disease than climate. Primary infection was characterised by spatially-random observations of disease incidence. As the season progressed, we observed an emerging short-range (1.6 m-4 m) spatial structure suggesting secondary spread was predominantly short-range, particularly where the resistant variety was grown

    Identification of ε-Poly-L-lysine as an Antimicrobial Product from an Epichloë Endophyte and Isolation of Fungal ε-PL Synthetase Gene

    No full text
    The endophytic fungus Epichloë festucae is known to produce bioactive metabolites, which consequently protect the host plants from biotic and abiotic stresses. We previously found that the overexpression of vibA (a gene for transcription factor) in E. festucae strain E437 resulted in the secretion of an unknown fungicide. In the present study, the active substance was purified and chemically identified as ε-poly-L-lysine (ε-PL), which consisted of 28–34 lysine units. The productivity was 3.7-fold compared with that of the wild type strain E437. The isolated ε-PL showed inhibitory activity against the spore germination of the plant pathogens Drechslera erythrospila, Botrytis cinerea, and Phytophthora infestans at 1–10 μg/mL. We also isolated the fungal gene “epls” encoding ε-PL synthetase Epls. Overexpression of epls in the wild type strain E437 resulted in the enhanced production of ε-PL by 6.7-fold. Interestingly, overexpression of epls in the different strain E. festucae Fl1 resulted in the production of shorter ε-PL with 8–20 lysine, which exhibited a comparable antifungal activity to the longer one. The results demonstrate the first example of ε-PL synthetase gene from the eukaryotic genomes and suggest the potential of enhanced expression of vibA or/and epls genes in the Epichloë endophyte for constructing pest-tolerant plants
    corecore