72 research outputs found

    Tetragonal Mexican-Hat Dispersion and Switchable Half-Metal State with Multiple Anisotropic Weyl Fermions in Penta-Graphene

    Full text link
    In past decades, the ever-expanding library of 2D carbon allotropes has yielded a broad range of exotic properties for the future carbon-based electronics. However, the known allotropes are all intrinsic nonmagnetic due to the paired valence electrons configuration. Based on the reported 2D carbon structure database and first-principles calculations, herein we demonstrate that inherent ferromagnetism can be obtained in the prominent allotrope, penta-graphene, which has an unique Mexican-hat valence band edge, giving rise to van Hove singularities and electronic instability. Induced by modest hole-doping, being achievable in electrolyte gate, the semiconducting pentagraphene can transform into different ferromagnetic half-metals with room temperature stability and switchable spin directions. In particular, multiple anisotropic Weyl states, including type-I and type-II Weyl cones and hybrid quasi Weyl nodal loop, can be found in a sizable energy window of spin-down half-metal under proper strains. These findings not only identify a promising carbon allotrope to obtain the inherent magnetism for carbon-based spintronic devices, but highlight the possibility to realize different Weyl states by combining the electronic and mechanical means as well

    Functional near-infrared spectroscopy as a potential objective evaluation technique in neurocognitive disorders after traumatic brain injury

    Get PDF
    Most patients with neurocognitive disorders after traumatic brain injury (TBI) show executive dysfunction, in which the pre-frontal cortex (PFC) plays an important role. However, less objective evaluation technique could be used to assess the executive dysfunction in these patients. Functional near-infrared spectroscopy (fNIRS), which is a non-invasive technique, has been widely used in the study of psychiatric disorders, cognitive dysfunction, etc. The present study aimed to explore whether fNIRS could be a technique to assess the damage degree of executive function in patients with neurocognitive disorders after TBI by using the Stroop and N-back tasks in PFC areas. We enrolled 37 patients with neurocognitive disorders after TBI and 60 healthy controls. A 22-channel fNIRS device was used to record HbO during Stroop, 1-back and 2-back tasks. The results showed that patients made significantly more errors and had longer response times than healthy controls. There were statistically significant differences in HbO level variation in bilateral frontopolar, bilateral inferior frontal gyrus and left middle temporal gyrus during Stroop color word consistency tasks and in left frontopolar during Stroop color word inconsistency tasks. During 2-back tasks, there were also statistically significant differences in HbO level variation in bilateral frontopolar, bilateral inferior frontal gyrus, bilateral dorsolateral pre-frontal cortex. According to brain activation maps, the patients exhibited lower but more widespread activation during the 2-back and Stroop color word consistency tasks. The fNIRS could identify executive dysfunction in patients with neurocognitive disorders after TBI by detecting HbO levels, which suggested that fNIRS could be a potential objective evaluation technique in neurocognitive disorders after TBI

    All-Trans-Retinoic Acid Suppresses Neointimal Hyperplasia and Inhibits Vascular Smooth Muscle Cell Proliferation and Migration via Activation of AMPK Signaling Pathway

    Get PDF
    The proliferation and migration of vascular smooth muscle cells (VSMC) is extensively involved in pathogenesis of neointimal hyperplasia. All-trans-retinoic acid (ATRA) is a natural metabolite of vitamin A. Here, we investigated the involvement of AMP-activated protein kinase (AMPK) in the anti-neointimal hyperplasia effects of ATRA. We found that treatment with ATRA significantly reduced neointimal hyperplasia in the left common carotid artery ligation mouse model. ATRA reduced the proliferation and migration of VSMC, A7r5 and HASMC cell lines. Our results also demonstrated that ATRA altered the expression of proliferation-related proteins, including CyclinD1, CyclinD3, CyclinA2, CDK2, CDK4, and CDK6 in VSMC. ATRA dose-dependently enhanced the phosphorylation level of AMPKα (Thr172) in the left common carotid artery of experimental mice. Also, the phosphorylation level of AMPKα in A7r5 and HASMC was significantly increased. In addition, ATRA dose-dependently reduced the phosphorylation levels of mTOR and mTOR target proteins p70 S6 kinase (p70S6K) and 4E-binding protein 1 (4EBP1) in A7r5 and HASMC. Notably, the inhibition of AMPKα by AMPK inhibitor (compound C) negated the protective effect of ATRA on VSMC proliferation in A7r5. Also, knockdown of AMPKα by siRNA partly abolished the anti-proliferative and anti-migratory effects of ATRA in HASMC. Molecular docking analysis showed that ATRA could dock to the agonist binding site of AMPK, and the binding energy between AMPK and ATRA was -7.91 kcal/mol. Molecular dynamics simulations showed that the binding of AMPK-ATRA was stable. These data demonstrated that ATRA might inhibit neointimal hyperplasia and suppress VSMC proliferation and migration by direct activation of AMPK and inhibition of mTOR signaling

    Decreasing Resistivity of Silicon Carbide Ceramics by Incorporation of Graphene

    No full text
    Silicon carbide (SiC) ceramic is an ideal material for mechanical seal because of its super hardness, high strength, low friction coefficient, good thermal conductivity, and resistance to friction and wear. However, due to relatively high resistivity of SiC ceramic, the triboelectric charge caused by rubbing of mechanical seal end-faces could not be released. It is terrible that the accumulation of triboelectric charge could cause electrochemical corrosion, which would accelerate wear. To decrease the resistivity of SiC ceramic is a desire for improving the performance of mechanical seal. In this research, decreasing resistivity of pressureless sintered SiC ceramic was investigated by conductive pathways through semiconductive grains in a body by incorporation of graphene, which has an extremely low resistivity. With the increasing of graphene from 0 to 2 wt.%, the volume resistivity of SiC ceramics sintered with graphene decreased logarithmically from >106 to around 200 Ω·cm, and the bulk density decreased gradually, from 3.132 to 3.039 g/cm3. In order to meet the requirements of mechanical seal, SiC ceramic sintered with 1 wt.% of graphene, for which the volume resistivity is of 397 Ω·cm, the bulk density is of 3.076 g/cm3, and the flexural strength is of 364 MPa, was optimized when all properties were taken into consideration. It is possible to fabricate low-resistivity SiC ceramic as a useful friction pair material for mechanical seal in a special condition, without excessive loss of their excellent mechanical properties by the introduction of partially connected graphene as conductive pathway into semiconducting ceramic

    Molecular dynamics simulations of wetting behaviors of droplets on surfaces with different rough structures

    No full text
    Aiming at the wall-wetting problem in internal combustion engines, to actively control the behaviors of fuel droplets after hitting the walls, the molecular dynamics method is used to investigate the effects of the surface wettability and rough structure on the static and dynamic wetting behaviors of the droplets. The results show that the droplet diameter has little influence on the intrinsic contact angle. With the decrease of the solid-liquid interaction coefficient, the interaction between the wall and the droplet is weakened, and the wetting state changes from the Wenzel state to the Cassie state, resulting in an increase in the static contact angle. As the ratio of the solid-liquid contact area to the composite contact area decreases, it is easier for the droplet to reach the Cassie state. Compared with the smooth surfaces, the structures of the rough surfaces have an inhibitory effect on the spreading of the droplets. The apparent contact angles of the droplets on the rough surfaces with different structures are larger than their intrinsic contact angles on the smooth surfaces. The secondary boss-shaped structures can significantly enhance the surface oleophobicity. In addition, with the decrease of the solid-liquid interaction coefficient, the contact angle hysteresis reduces. Compared with the Wenzel state, the droplet in the Cassie state has a smaller contact area with the surface, which makes the interaction between the wall and the droplet weaker, leading to a decrease in the contact angle hysteresis

    The Effect of Rotary-Die Equal-Channel Angular Pressing Process on the Microstructure, the Mechanical and Friction Properties of GW103 Alloy

    No full text
    In this study, the effect of rotary-die equal-channel angular pressing (RD-ECAP) on the microstructure and texture evolution of GW103 alloy is studied. RD-ECAP processes were carried out for 1, 4 and 12 passes at 450 °C. The mechanical properties and friction behavior of RD-ECAP-processed Mg-10Gd-3Y (wt%) alloy (GW103) are discussed. The results reveal that the size of dynamic recrystallized grains and second-phase particles are significantly refined to about 1.3 μm and 1 μm, respectively. The texture evolution of the processed samples is studied by X-ray diffraction and electron backscattered diffraction techniques. The multiple texture components formed are not observed after the conventional ECAP process. Moreover, different dynamic recrystallization (DRX) mechanisms are systemically analyzed and discussed in view of the texture evolution of ECAP processed samples. The final textures obtained after 12 passes are identified as two types: The C-texture type induced by continuous and discontinuous DRX, and the random texture components induced by reorientation of the initial <101¯0> fiber. Based on the grain refinement, precipitate strengthening and texture weakening mechanisms, a high-performance ternary alloy of Mg-Gd-Y was firstly obtained through 12 passes RD-ECAP processing, with a combination of high yield strength of 312 MPa and a high ductility of 22%. In addition, the friction behaviors are also studied. The multi-pass-processed samples exhibit a relatively lower friction coefficient under a load of 10 N at room temperature

    Comparison of postoperative complications in mediastinal lymph node dissection versus mediastinal lymph node sampling for early stage non-small cell lung cancer: Protocol for a systematic review and meta-analysis.

    No full text
    IntroductionLung cancer is the primary cause of cancer-related deaths worldwide, with high rates of morbidity and mortality. The most effective treatment for early stage (I-II) non-small cell lung cancer (NSCLC) is surgical resection. However, the extent of mediastinal lymph nodes removal required and the impact of their removal remains controversial. This systematic review and meta-analysis aimed to evaluate the postoperative complications in patients with stage I-II NSCLC who received mediastinal lymph node dissection (MLND) or mediastinal lymph node sampling (MLNS).Methods and analysisAccording to the predefined inclusion criteria, we will conduct a comprehensive search for randomized controlled trials (RCTs) and observational studies examining the postoperative complications of MLND compared to MLNS in patients with stage I-II NSCLC. The search will be performed across multiple databases including PubMed, Embase, the Cochrane Library, CNKI, WanFang, Sinomed, VIP, Duxiu, and Web of Science from inception to February 2024. Additionally, relevant literature references will be retrieved and hand searching of pertinent journals will be conducted. Screening, data extraction, and quality assessment will be performed by two independent reviewers. Review Manager 5.4 will be applied in analyzing and synthesizing. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) will be used to assess the quality of evidence for the whole RCTs and used Newcastle-Ottawa scale to assess the methodologic quality of observational studies.Ethics and disseminationThis study did not include personal information. Ethical approval was not required for this study. This study is based on a secondary analysis of the literature, so ethical review approval is not required. The final report will be published in a peer-reviewed journal.ConclusionThis systematic review will contribute to compare the safety and survival benefits of these two surgical techniques for the treatment of early stage NSCLC, to further guide the selection of surgical approaches.Trial registrationThe protocol of the systematic review has been registered on Open Science Framework, with a registration number of DOI https://doi.org/10.17605/OSF.IO/N2Y5D
    • …
    corecore