1,468 research outputs found

    Gate Tunable Dissipation and "Superconductor-Insulator" Transition in Carbon Nanotube Josephson Transistors

    Full text link
    Dissipation is ubiquitous in quantum systems, and its interplay with fluctuations is critical to maintaining quantum coherence. We experimentally investigate the dissipation dynamics in single-walled carbon nanotubes coupled to superconductors. The voltage-current characteristics display gate-tunable hysteresis, with sizes that perfectly correlate with the normal state resistance RN, indicating the junction undergoes a periodic modulation between underdamped and overdamped regimes. Surprisingly, when a device's Fermi-level is tuned through a local conductance minimum, we observe a gate-controlled transition from superconducting-like to insulating-like states, with a "critical" R_N value of about 8-20 kohm.Comment: Figures revised to improve clarity. Accepted for publication by Physical Review Letter

    Quantum Transport and Field Induced Insulating States in Bilayer Graphene pnp Junctions

    Full text link
    We perform transport measurements in high quality bilayer graphene pnp junctions with suspended top gates. At a magnetic field B=0, we demonstrate band gap opening by an applied perpendicular electric field, with an On/Off ratio up to 20,000 at 260mK. Within the band gap, the conductance decreases exponentially by 3 orders of magnitude with increasing electric field, and can be accounted for by variable range hopping with a gate-tunable density of states, effective mass, and localization length. At large B, we observe quantum Hall conductance with fractional values, which arise from equilibration of edge states between differentially-doped regions, and the presence of an insulating state at filling factor {\nu}=0. Our work underscores the importance of bilayer graphene for both fundamental interest and technological applications.Comment: 4 figures, to appear in Nano Lett. Minor typos correcte

    Electrical Transport in High Quality Graphene pnp Junctions

    Full text link
    We fabricate and investigate high quality graphene devices with contactless, suspended top gates, and demonstrate formation of graphene pnp junctions with tunable polarity and doping levels. The device resistance displays distinct oscillations in the npn regime, arising from the Fabry-Perot interference of holes between the two pn interfaces. At high magnetic fields, we observe well-defined quantum Hall plateaus, which can be satisfactorily fit to theoretical calculations based on the aspect ratio of the device.Comment: to appear in a special focus issue in New Journal of Physic

    Gas kinematics and star formation in the filamentary molecular cloud G47.06+0.26

    Full text link
    We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO (J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45 arcmin (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26 has a linear mass density of about 361.5 Msun/pc. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is about 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of about 100000 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.Comment: 10 pages, 11 figures, accepted for publication in A&
    • …
    corecore