1,475 research outputs found

    Differential Geometrical Formulation of Gauge Theory of Gravity

    Get PDF
    Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity which is proposed in the references hep-th/0109145 and hep-th/0112062 is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to find the differential geometric formulation of quantum gauge theory of gravity. We first give out the correspondence between quantum gauge theory of gravity and differential geometry. Then we give out differential geometric formulation of quantum gauge theory of gravity.Comment: 10 pages, no figur

    Chiral Perturbation Theory and the BˉBˉ\bar B \bar B Strong Interaction

    Full text link
    We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to O(ϵ2)O(\epsilon^2) with the heavy meson chiral perturbation theory. We take into account the contributions from the football, triangle, box, and crossed diagrams with the 2ϕ\phi exchange and one-loop corrections to the contact terms. We notice that the total 2ϕ\phi-exchange potential alone is attractive in the small momentum region in the channel BˉBˉI=1{\bar B \bar B}^{I=1}, BˉsBˉsI=0{\bar B_s \bar B_s}^{I=0}, or BˉBˉsI=1/2{\bar B \bar B_s}^{I=1/2}, while repulsive in the channel BˉBˉI=0{\bar B \bar B}^{I=0}. Hopefully the analytical chiral structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice QCD simulation.Comment: 14 pages, 8 figures, 4 tables; discussion extended, references added, version published in Phys. Rev.
    • …
    corecore