1,560 research outputs found

    Effective Silencing of Sry Gene with RNA Interference in Developing Mouse Embryos Resulted in Feminization of XY Gonad

    Get PDF
    Delivering siRNA or shRNA into the developing embryos is still a main challenge to use of RNAi in mammalian systems. Here we analyze several factors influencing RNAi-mediated silencing of Sry gene, which is a tightly controlled spatiotemporal expressed gene and only shortly expressed in developing mouse embryo gonad. A Sry gene-specific shRNAs expression vector (pSilencer4.1/Sry565) was constructed. The shRNA constructs were mixed with polyethylenimines (PEIs) to form a complex and then injected into pregnant mice though tail vein. Our results showed that Sry gene was downregulated significantly in developing embryos. Further study revealed that knocking-down of Sry expression resulted in feminization of gonad development in mouse embryos and the expression level of Sox9 and Wt1 gene was also significantly changed by downregulation of Sry. The transfection efficiency is associated with the amount of plasmid DNA injection, injection time, injection speed, and volume. Our studies suggest that transplacental RNAi could be implemented by tail vein injection of plasmid vector into pregnant mice

    3,6-Di-4-pyridyl-1,4-dihydro-1,2,4,5-tetra­zine

    Get PDF
    The mol­ecule of the title compound, C12H10N6, which is V-shaped due to the boat conformation of the dihydro­tetra­zine ring, has crystallographic C 2 symmetry. The dihedral angle between the planes of the two pyridine rings is 31.57 (3)°. Mol­ecules are linked by weak N—H⋯N and C—H⋯N hydrogen bonds, forming a two-dimensional polymeric structure

    Effects of nebulized ketamine on allergen-induced airway hyperresponsiveness and inflammation in actively sensitized Brown-Norway rats

    Get PDF
    Since airway hyperresponsiveness (AHR) and allergic inflammatory changes are regarded as the primary manifestations of asthma, the main goals of asthma treatment are to decrease inflammation and maximize bronchodilation. These goals can be achieved with aerosol therapy. Intravenous administration of the anesthetic, ketamine, has been shown to trigger bronchial smooth muscle relaxation. Furthermore, increasing evidence suggests that the anti-inflammatory properties of ketamine may protect against lung injury. However, ketamine inhalation might yield the same or better results at higher airway and lower ketamine plasma concentrations for the treatment of asthma. Here, we studied the effect of ketamine inhalation on bronchial hyperresponsiveness and airway inflammation in a Brown-Norway rat model of ovalbumin(OVA)-induced allergic asthma. Animals were actively sensitized by subcutaneous injection of OVA and challenged by repeated intermittent (thrice weekly) exposure to aerosolized OVA for two weeks. Before challenge, the sensitizened rats received inhalation of aerosol of phosphate-buffered saline (PBS) or aerosol of ketamine or injection of ketamine respectivity. Airway reactivity to acetylcholine (Ach) was measured in vivo, and various inflammatory markers, including Th2 cytokines in bronchoalveolar lavage fluid (BALF), as well as induciable nitric oxide synthase (iNOS) and nitric oxide (NO) in lungs were examined. Our results revealed that delivery of aerosolized ketamine using an ultrasonic nebulizer markedly suppressed allergen-mediated airway hyperreactivity, airway inflammation and airway inflammatory cell infiltration into the BALF, and significantly decreased the levels of interleukin-4 (IL-4) in the BALF and expression of iNOS and the concentration of NO in the inflamed airways from OVA-treated rats. These findings collectively indicate that nebulized ketamine attenuated many of the central components of inflammatory changes and AHR in OVA-provoked experimental asthma, potentially providing a new therapeutic approach against asthma

    Predictive value of PIMREG in the prognosis and response to immune checkpoint blockade of glioma patients

    Get PDF
    Glioma is the most common primary brain tumor in the human brain. The present study was designed to explore the expression of PIMREG in glioma and its relevance to the clinicopathological features and prognosis of glioma patients. The correlations of PIMREG with the infiltrating levels of immune cells and its relevance to the response to immunotherapy were also investigated. PIMREG expression in glioma was analyzed based on the GEO, TCGA, and HPA databases. Kaplan–Meier survival analysis was used to examine the predictive value of PIMREG for the prognosis of patients with glioma. The correlation between the infiltrating levels of immune cells in glioma and PIMREG was analyzed using the CIBERSORT algorithm and TIMRE database. The correlation between PIMREG and immune checkpoints and its correlation with the patients’ responses to immunotherapy were analyzed using R software and the GEPIA dataset. Cell experiments were conducted to verify the action of PIMREG in glioma cell migration and invasion. We found that PIMREG expression was upregulated in gliomas and positively associated with WHO grade. High PIMREG expression was correlated with poor prognosis of LGG, prognosis of all WHO grade gliomas, and prognosis of recurrent gliomas. PIMREG was related to the infiltration of several immune cell types, such as M1 and M2 macrophages, monocytes and CD8+ T cells. Moreover, PIMREG was correlated with immune checkpoints in glioma and correlated with patients’ responses to immunotherapy. KEGG pathway enrichment and GO functional analysis illustrated that PIMREG was related to multiple tumor- and immune-related pathways. In conclusion, PIMREG overexpression in gliomas is associated with poor prognosis of patients with glioma and is related to immune cell infiltrates and the responses to immunotherapy

    Enhancing Depth Completion with Multi-View Monitored Distillation

    Full text link
    This paper presents a novel method for depth completion, which leverages multi-view improved monitored distillation to generate more precise depth maps. Our approach builds upon the state-of-the-art ensemble distillation method, in which we introduce a stereo-based model as a teacher model to improve the accuracy of the student model for depth completion. By minimizing the reconstruction error for a given image during ensemble distillation, we can avoid learning inherent error modes of completion-based teachers. To provide self-supervised information, we also employ multi-view depth consistency and multi-scale minimum reprojection. These techniques utilize existing structural constraints to yield supervised signals for student model training, without requiring costly ground truth depth information. Our extensive experimental evaluation demonstrates that our proposed method significantly improves the accuracy of the baseline monitored distillation method.Comment: 6 pages, 5 figures, references adde
    corecore