8,000 research outputs found

    Solar: L0L_0 solution path averaging for fast and accurate variable selection in high-dimensional data

    Full text link
    We propose a new variable selection algorithm, subsample-ordered least-angle regression (solar), and its coordinate descent generalization, solar-cd. Solar re-constructs lasso paths using the L0L_0 norm and averages the resulting solution paths across subsamples. Path averaging retains the ranking information of the informative variables while averaging out sensitivity to high dimensionality, improving variable selection stability, efficiency, and accuracy. We prove that: (i) with a high probability, path averaging perfectly separates informative variables from redundant variables on the average L0L_0 path; (ii) solar variable selection is consistent and accurate; and (iii) the probability that solar omits weak signals is controllable for finite sample size. We also demonstrate that: (i) solar yields, with less than 1/31/3 of the lasso computation load, substantial improvements over lasso in terms of the sparsity (64-84\% reduction in redundant variable selection) and accuracy of variable selection; (ii) compared with the lasso safe/strong rule and variable screening, solar largely avoids selection of redundant variables and rejection of informative variables in the presence of complicated dependence structures; (iii) the sparsity and stability of solar conserves residual degrees of freedom for data-splitting hypothesis testing, improving the accuracy of post-selection inference on weak signals with limited nn; (iv) replacing lasso with solar in bootstrap selection (e.g., bolasso or stability selection) produces a multi-layer variable ranking scheme that improves selection sparsity and ranking accuracy with the computation load of only one lasso realization; and (v) given the computation resources, solar bootstrap selection is substantially faster (98\% lower computation time) than the theoretical maximum speedup for parallelized bootstrap lasso (confirmed by Amdahl's law)

    Chiral Condensates in Quark and nuclear Matter

    Full text link
    We present a novel treatment for calculating the in-medium quark condensates. The advantage of this approach is that one does not need to make further assumptions on the derivatives of model parameters with respect to the quark current mass. The normally accepted model-independent result in nuclear matter is naturally reproduced. The change of the quark condensate induced by interactions depends on the incompressibility of nuclear matter. When it is greater than 260 MeV, the density at which the condensate vanishes is higher than that from the linear extrapolation. For the chiral condensate in quark matter, a similar model-independent linear behavior is found at lower densities, which means that the decreasing speed of the condensate in quark matter is merely half of that in nuclear matter if the pion-nucleon sigma commutator is six times the average current mass of u and d quarks. The modification due to QCD-like interactions is found to slow the decreasing speed of the condensate, compared with the linear extrapolation.Comment: 12 pages, 7 figures, revtex4 styl

    Theoretical Triple-Differential Cross Sections of a Methane Molecule By a Proper-Average Method

    Get PDF
    For the last few years, our group has calculated cross sections for electron-impact ionization of molecules using the molecular three-body distorted-wave approximation coupled with the orientation-averaged molecular orbital (OAMO) approximation. This approximation was very successful for calculating ionization cross sections for hydrogen molecules and to a lesser extent nitrogen molecules. Recently we used the approximation to calculate single ionization cross sections for the 1t2 state of methane (CH4) and we found major discrepancies with the experimental data. Here we investigate the validity of the OAMO approximation by calculating cross sections that have been properly averaged over all molecular orientations. These calculations with proper averages are in much better agreement with experiment than the OAMO calculations

    A top-down approach to articulated human pose estimation and tracking

    Full text link
    © 2019, Springer Nature Switzerland AG. Both the tasks of multi-person human pose estimation and pose tracking in videos are quite challenging. Existing methods can be categorized into two groups: top-down and bottom-up approaches. In this paper, following the top-down approach, we aim to build a strong baseline system with three modules: human candidate detector, single-person pose estimator and human pose tracker. Firstly, we choose a generic object detector among state-of-the-art methods to detect human candidates. Then, cascaded pyramid network is used to estimate the corresponding human pose. Finally, we use a flow-based pose tracker to render keypoint-association across frames, i.e., assigning each human candidate a unique and temporally-consistent id, for the multi-target pose tracking purpose. We conduct extensive ablative experiments to validate various choices of models and configurations. We take part in two ECCV’18 PoseTrack challenges (https://posetrack.net/workshops/eccv2018/posetrack_eccv_2018_results.html ): pose estimation and pose tracking

    ^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2

    Full text link
    The CoO2_{2} layers in sodium-cobaltates Nax_{x}CoO2_{2} may be viewed as a spin S=1/2S=1/2 triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high TcT_{c} cuprates. We will present unequivocal 59^{59}Co NMR evidence that below TCO∼51KT_{CO}\sim51 K, the insulating ground state of the itinerant antiferromagnet Na0.5_{0.5}CoO2_{2} (TN∼86KT_{N}\sim 86 K) is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure

    In-medium Properties of Θ+\Theta^{+} as a Kπ\piN structure in Relativistic Mean Field Theory

    Full text link
    The properties of nuclear matter are discussed with the relativistic mean-field theory (RMF).Then, we use two models in studying the in-medium properties of Θ+\Theta^+: one is the point-like Θ∗\Theta^* in the usual RMF and the other is a Kπ\piN structure for the pentaquark. It is found that the in-medium properties of Θ+\Theta^+ are dramatically modified by its internal structure. The effective mass of Θ+\Theta^+ in medium is, at normal nuclear density, about 1030 MeV in the point-like model, while it is about 1120 MeV in the model of Kπ\piN pentaquark. The nuclear potential depth of Θ+\Theta^+ in the Kπ\piN model is approximately -37.5 MeV, much shallower than -90 MeV in the usual point-like RMF model.Comment: 8 pages, 5 figure

    Possible superconductivity above 25 K in single crystalline Co-doped BaFe2_{2}As2_{2}

    Full text link
    We present superconducting properties of single crystalline Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} by measuring magnetization, resistivity, upper critical field, Hall coefficient, and magneto-optical images. The magnetization measurements reveal fish-tail hysteresis loop at high temperatures and relatively high critical current density above Jc=105J_{c}=10^{5} A/cm2^{2} at low temperatures. Upper critical field determined by resistive transition is anisotropic with anisotropic parameter ∼\sim 3.5. Hall effect measurements indicate that Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} is a multiband system and the mobility of electron is dominant. The magneto-optical imaging reveals prominent Bean-like penetration of vortices although there is a slight inhomogeneity in a sample. Moreover, we find a distinct superconductivity above 25 K, which leads us to speculate that higher transition temperature can be realized by fine tuning Co-doping level.Comment: 4 pages, 5 figure

    The hyperon mean free paths in the relativistic mean field

    Full text link
    The Λ\Lambda- and Ξ−\Xi^--hyperon mean free paths in nuclei are firstly calculated in the relativistic mean field (RMF) theory. The real parts of the optical potential are derived from the RMF approach, while the imaginary parts are obtained from those of nucleons with the relations: USIY=ασY⋅USINU^{\mathrm{IY}}_{\mathrm{S}} = \alpha_{\sigma \mathrm{Y}}\cdot U_{\mathrm{S}}^{\mathrm{IN}} and UVIY=αωY⋅UVINU^{\mathrm{IY}}_{\mathrm{V}} = \alpha_{\omega \mathrm{Y}}\cdot U_{\mathrm{V}}^{\mathrm{IN}} . With the assumption, the depth of the imaginary potential for Ξ−\Xi^- is WΞ≃−W_{\Xi}\simeq- 3.5 MeV, and for Λ\Lambda is WΛ≃−W_{\Lambda}\simeq- 7 MeV at low incident energy. We find that, the hyperon mean free path decreases with the increase of the hyperon incident energies, from 200 MeV to 800 MeV; and in the interior of the nuclei, the mean free path is about 2∼32\sim 3 fm for Λ\Lambda, and about 4∼84\sim 8 fm for Ξ−\Xi^-, depending on the hyperon incident energy.Comment: 5 figures, 6 page
    • …
    corecore