910 research outputs found

    Computational evaluation of TIS annotation for prokaryotic genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate annotation of translation initiation sites (TISs) is essential for understanding the translation initiation mechanism. However, the reliability of TIS annotation in widely used databases such as RefSeq is uncertain due to the lack of experimental benchmarks.</p> <p>Results</p> <p>Based on a homogeneity assumption that gene translation-related signals are uniformly distributed across a genome, we have established a computational method for a large-scale quantitative assessment of the reliability of TIS annotations for any prokaryotic genome. The method consists of modeling a positional weight matrix (PWM) of aligned sequences around predicted TISs in terms of a linear combination of three elementary PWMs, one for true TIS and the two others for false TISs. The three elementary PWMs are obtained using a reference set with highly reliable TIS predictions. A generalized least square estimator determines the weighting of the true TIS in the observed PWM, from which the accuracy of the prediction is derived. The validity of the method and the extent of the limitation of the assumptions are explicitly addressed by testing on experimentally verified TISs with variable accuracy of the reference sets. The method is applied to estimate the accuracy of TIS annotations that are provided on public databases such as RefSeq and ProTISA and by programs such as EasyGene, GeneMarkS, Glimmer 3 and TiCo. It is shown that RefSeq's TIS prediction is significantly less accurate than two recent predictors, Tico and ProTISA. With convincing proofs, we show two general preferential biases in the RefSeq annotation, <it>i.e</it>. over-annotating the longest open reading frame (LORF) and under-annotating ATG start codon. Finally, we have established a new TIS database, SupTISA, based on the best prediction of all the predictors; SupTISA has achieved an average accuracy of 92% over all 532 complete genomes.</p> <p>Conclusion</p> <p>Large-scale computational evaluation of TIS annotation has been achieved. A new TIS database much better than RefSeq has been constructed, and it provides a valuable resource for further TIS studies.</p

    OpenDelta: A Plug-and-play Library for Parameter-efficient Adaptation of Pre-trained Models

    Full text link
    The scale of large pre-trained models (PTMs) poses significant challenges in adapting to downstream tasks due to the high optimization overhead and storage costs associated with full-parameter fine-tuning. To address this, many studies explore parameter-efficient tuning methods, also framed as "delta tuning", which updates only a small subset of parameters, known as "delta modules", while keeping the backbone model's parameters fixed. However, the practicality and flexibility of delta tuning have been limited due to existing implementations that directly modify the code of the backbone PTMs and hard-code specific delta tuning methods for each PTM. In this paper, we present OpenDelta, an open-source library that overcomes these limitations by providing a plug-and-play implementation of various delta tuning methods. Our novel techniques eliminate the need to modify the backbone PTMs' code, making OpenDelta compatible with different, even novel PTMs. OpenDelta is designed to be simple, modular, and extensible, providing a comprehensive platform for researchers and practitioners to adapt large PTMs efficiently.Comment: Accepted to ACL 2023 Demo trac

    Flopping-mode spin qubit in a Si-MOS quantum dot

    Full text link
    Spin qubits based on silicon metal-oxide semiconductor (Si-MOS) quantum dots (QDs) are promising platforms for large-scale quantum computers. To control spin qubits in QDs, electric dipole spin resonance (EDSR) has been most commonly used in recent years. By delocalizing an electron across a double quantum dots charge state, flopping-mode EDSR has been realized in Si/SiGe QDs. Here, we demonstrate a flopping-mode spin qubit in a Si-MOS QD via Elzerman single-shot readout. When changing the detuning with a fixed drive power, we achieve s-shape spin resonance frequencies, an order of magnitude improvement in the spin Rabi frequencies, and virtually constant spin dephasing times. Our results offer a route to large-scale spin qubit systems with higher control fidelity in Si-MOS QDs.Comment: 5 pages, 4 figure

    The fast light of CsI(Na) crystals

    Full text link
    The responds of different common alkali halide crystals to alpha-rays and gamma-rays are tested in our research. It is found that only CsI(Na) crystals have significantly different waveforms between alpha and gamma scintillations, while others have not this phenomena. It is suggested that the fast light of CsI(Na) crystals arises from the recombination of free electrons with self-trapped holes of the host crystal CsI. Self-absorption limits the emission of fast light of CsI(Tl) and NaI(Tl) crystals.Comment: 5 pages, 11 figures Submit to Chinese Physics

    Analysis of 10,000 ESTs from lymphocytes of the cynomolgus monkey to improve our understanding of its immune system

    Get PDF
    BACKGROUND: The cynomolgus monkey (Macaca fascicularis) is one of the most widely used surrogate animal models for an increasing number of human diseases and vaccines, especially immune-system-related ones. Towards a better understanding of the gene expression background upon its immunogenetics, we constructed a cDNA library from Epstein-Barr virus (EBV)-transformed B lymphocytes of a cynomolgus monkey and sequenced 10,000 randomly picked clones. RESULTS: After processing, 8,312 high-quality expressed sequence tags (ESTs) were generated and assembled into 3,728 unigenes. Annotations of these uniquely expressed transcripts demonstrated that out of the 2,524 open reading frame (ORF) positive unigenes (mitochondrial and ribosomal sequences were not included), 98.8% shared significant similarities (E-value less than 1e-10) with the NCBI nucleotide (nt) database, while only 67.7% (E-value less than 1e-5) did so with the NCBI non-redundant protein (nr) database. Further analysis revealed that 90.0% of the unigenes that shared no similarities to the nr database could be assigned to human chromosomes, in which 75 did not match significantly to any cynomolgus monkey and human ESTs. The mapping regions to known human genes on the human genome were described in detail. The protein family and domain analysis revealed that the first, second and fourth of the most abundantly expressed protein families were all assigned to immunoglobulin and major histocompatibility complex (MHC)-related proteins. The expression profiles of these genes were compared with that of homologous genes in human blood, lymph nodes and a RAMOS cell line, which demonstrated expression changes after transformation with EBV. The degree of sequence similarity of the MHC class I and II genes to the human reference sequences was evaluated. The results indicated that class I molecules showed weak amino acid identities (<90%), while class II showed slightly higher ones. CONCLUSION: These results indicated that the genes expressed in the cynomolgus monkey could be used to identify novel protein-coding genes and revise those incomplete or incorrect annotations in the human genome by comparative methods, since the old world monkeys and humans share high similarities at the molecular level, especially within coding regions. The identification of multiple genes involved in the immune response, their sequence variations to the human homologues, and their responses to EBV infection could provide useful information to improve our understanding of the cynomolgus monkey immune system

    Mixed methods to explore factors associated with the decline of patients in the methadone maintenance treatment program in Shanghai, China

    Get PDF
    BACKGROUND: This study was to characterize the Methadone Maintenance Treatment (MMT) in Shanghai, China, and to explore factors associated with the decline of patients in MMT during 2005-2016. METHODS: Both qualitative and quantitative methods were used in this study. Based on the data from Shanghai Centers for Disease Control (CDC), we described the changes in the number of patients who received MMT, and new enrollment each year from 2005 to 2016. Focus groups were conducted with 22 patients, and in-depth interviews were conducted with 9 service providers. RESULTS: Quantitative data demonstrate that the number of new enrollment began to decline in 2009, and the number of patients receiving MMT began to decline in 2012. The main reasons for dropout include (1) discontinuing medication due to unknown reasons (25%), (2) criminal activities other than drug-related crimes (20%), (3) relapse to heroin use (16%), and (4) physical disease (10%). Qualitative assessment results indicate that the major reasons for the decline of patients in MMT are as follows: (1) the increase of Amphetamine-type stimulants (ATS) use in recent years, (2) limited knowledge about MMT in both patients and MMT staff, (3) complicated enrollment criteria, and (4) discrimination against drug use. CONCLUSION: Various reasons to explain the decline of patients in MMT in Shanghai, China, were identified. Government agencies, service providers, and other stakeholders need to work together and overcome identified barriers to support MMT programs in China
    • …
    corecore