9 research outputs found

    Transfer Robustness Optimization for Urban Rail Transit Timetables

    Get PDF
    A good timetable is required to not only be efficient, but also yield effectiveness in preventing and counteracting delays. When travelling via urban rail transit networks, transferring passengers may miss their scheduled connecting train because of a feeder train delay that results in them experiencing increased travel costs. Considering that running time supplements and transfer buffer times yield different effects on the travel plans of transferring and nontransferring passengers, we formulate an expected extra travel cost (EETC) function to appropriately balance efficiency and robustness, which is then implemented in the construction of a robust transfer optimization model with the objective of minimizing the total EETC. Next, to improve the computational efficiency, we propose an approximate linearization approach for the EETC function and introduce two types of binary variables and auxiliary substitution variables to convert the nonlinear model to a mixed-integer linear model. Experimental results show that our proposed method can yield practically applicable solutions with significant reductions in both EETC and probability of missing a transfer. Document type: Articl

    A Passenger-Oriented Model for Train Rescheduling on an Urban Rail Transit Line considering Train Capacity Constraint

    No full text
    The major objective of this work is to present a train rescheduling model with train capacity constraint from a passenger-oriented standpoint for a subway line. The model expects to minimize the average generalized delay time (AGDT) of passengers. The generalized delay time is taken into consideration with two aspects: the delay time of alighting passengers and the penalty time of stranded passengers. Based on the abundant automatic fare collection (AFC) system records, the passenger arrival rate and the passenger alighting ratio are introduced to depict the short-term characteristics of passenger flow at each station, which can greatly reduce the computation complexity. In addition, an efficient genetic algorithm with adaptive mutation rate and elite strategy is used to solve the large-scale problem. Finally, Beijing Subway Line 13 is taken as a case study to validate the method. The results show that the proposed model does help neutralize the effect of train delay, with a 9.47% drop in the AGDT in comparison with the train-oriented model

    A Practical Method for Timetable Rescheduling in Subway Networks during the End-of-Service Period

    No full text
    This study proposes a biobjective optimization method for timetable rescheduling during the end-of-service period of a subway network, taking all stakeholders’ interests into consideration. We seek to minimize the total transfer waiting time for all transfer passengers, meanwhile minimizing the deviation to the scheduled timetable. The ε-constraint method and linearization techniques are utilized to obtain the approximate Pareto optimal solutions within limited seconds, allowing for figuring out the trade-off between the two objectives. The method is validated by numerical experiments for different delay scenarios based on a real-world case: the Beijing subway network

    Transfer Coordination for Metro Networks during the Start- or End-of-Service Period

    No full text
    When travelling via metro networks during the start- or end-of-service period, transferring passengers may suffer a transfer failure. Accordingly, the synchronization timetabling problem necessitates consideration of transfer waiting time and transfer availability with respect to the first or last train. Hence, transfer train index (TTI) is formulated to identify the transfer train and calculate the transfer waiting time. Furthermore, two types of connection indexes, the last connection train index (LCTI) and the first connection train index (FCTI), are devised to distinguish transfer failure from transfer success, and the penalty constraints are implemented together to reflect the adverse effects of transfer failure. Then, a mixed integer programming model is developed to concurrently reduce transfer waiting time and improve transfer availability, which can be solved by CPLEX. Finally, a case study on Beijing metro network is made to verify the method. Experimental results show that our proposed model can yield synchronization solutions with significant reductions in both the average transfer waiting time and the proportion of transfer failure passengers

    Spatiotemporally heterogeneous soil thermohydraulic processes in the frozen soil of the Tibetan Plateau

    No full text
    Frozen soil properties and thermohydraulic processes are still not fully understood due to lack of in-situ measurements, especially in the high altitudes and high latitudes (HAHL). Based on hourly measurements at 10, 40, 80 and 120 cm depths at 21 sites in the west, south and northeast regions of the Tibetan Plateau (TP) during July 2018 - July 2019, we examined soil particles, spatiotemporal variations of soil thermohydraulic processes and their connections with environmental factors to reveal the heterogenous frozen soil properties on the TP. Sand and silt are the dominant soil particles and clay is less than 10% at the sites. Existing and widely used soil products underestimates (significantly overestimates) sand (clay) content on the TP which raises the uncertainty in the thermohydraulic parameters derived from these products. Diurnal soil moisture and temperature variations are seen only above 40 cm, but seasonal variations occur down to 120 cm due to the soil memory effect. Seasonally frozen soil and permafrost soil show different freezing and melting processes. Dry soil features greater soil temperature temporal variability and deeper maximum frozen depth than wet soil. Zero curtain occurs in both dry and wet soil, and displays high (low) frequency but short (long) duration at 10 (80) cm that vary spatially. Moisture depression exists in seasonally frozen soil and is determined by the initial soil moisture and temperature gradient strength. The strong thermohydraulic coupling existed in cold season collapses in warm season. Soil moisture exhibits higher spatiotemporal variability than soil temperature. At daily time scale, the influences of precipitation, wind speed and relative humidity on soil moisture and temperature vary under different climate conditions. These findings fill the knowledge gaps in the soil thermohydraulic processes in the HAHL, and improve the understanding of frozen soil properties and heat-water coupling processes in soil in the HAHL. The study will benefit the Earth system model development and improve the quality of soil temperature and moisture assimilation and remote sensing products in the HAHL
    corecore